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Abstract 

In order to determine the effect of ice protuberances on local convective heat transfer coefficient, 
enhancement of heat transfer coefficient on small (2 mm to 6 mm diameter) hemispherical elements on 
a flat plate has been studied in a wind tunnel using an infrared camera. The influence of size and 
density of protuberances and velocity are investigated for laminar and turbulent boundary layers on 

the flat plate. Maximum heat transfer is observed on the upstream face of protuberances and values 
increase strongly with roughness size and velocity for laminar conditions on the flat plate. For 
turbulent conditions. heat transfer enhancement is relatively constant with velOCity. but increases 
with the size of protuberances. Results are also given for multiple elements configurations. 

1. Introduction 

Understanding the local convective heat transfer on rough ice surfaces is central to successfully 
modeling aircraft ice accretion because the accretion is controlled by the rate at which latent heat can 
be convected away from the icing surface [1]. Recent close-up video studies have observed ice 
growth from upstream face of surface protuberances [2]. This process is thought to be initiated by 
local enhancement in heat transfer which occurs on surface roughness which are approximately one 
mm in diameter. 

Most prior studies of forced convective heat transfer from roughened surfaces focused on cases 
where the roughness height was small compared to the boundary layer thickness and most of 
traditional experimental methuds have investigated the averaged heat transfer over many 
roughness elements [3. 4]. Consequently. it was necessary to develop an experimental technique 
to study local variation of heat transfer at high spatial resolution. Because infrared thermography 
was used successfully for heat transfer measurement in wind tunnel in the past [5. 6]. this technique 
was employed for this study. 

2. Experimental set-up 

The experimental approach is based on thermographic measurements of the local perturbations 
in heat transfer caused by protuberances on a,' uniformly heated surface. Measurements were 
performed in a low turbulence (less than 0.2 %). (30.5 cm x 30.5 cm) wind tunnel using the 
experimental set-up shown in figure 1. The test protuberances were mounted on a 50 cm long, 30 
cm wide flat Plexiglass plate and were observed with an infrared camera. 

Test protuberances typically consisted of plastic hemispherical beads. The test location was In 
the center of the plate. 25 cm downstream from the leading edge. The plate had a beveled leading 
edge with a 1.5 mm nose radius. For turbulent boundary layer tests, a 0.5 mm diameter wire was 
placed at the leading edge of the plate to trip the boundary layer. The turbulent boundary layer WQ(iI 
verified by a drop in plate surface temperature (typically greater than 1 DOC) which was observed 
by infrared imaging with the trip wire present. Thermocouples were included in the experimental set· 
up to provide freestream air temperature data and reference surface temperature readings. 

The test surface was heated with three 250 W infrared lamps to provide uniform heating in the 
roughness element area. Uniformity of heating was verified by measuring surface temperature 
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without external flow. The plate and roughness elements were painted flat black to aid in uniform 
heating and to avoid false infrared temperature signals due to heat reflection. 

A Hughes Probeye thermal video system was used to map surface temperatures. The infrared 
camera was located 15 em above the plate and was focused on the roughness element zone 
through a hole in the upper wall of the test section. This system uses 6 short wavelength detectors 
(2-5.6 llm) and 10 mirrors delivering 20 frames per second, each frame containing 60 lines. Spatial 
resolution was approximately 0.5 mm and temperature resolution was approximately 0.5 °C. The 
system displayed a color video image with temperature scales and temperature plots on selected 
cross sections. Temperature range and sensitivity could be adjusted and surface emissivity could 
be compensated, but due to the flat black surface, emissivity was assumed to be equal to unity. A 
high temperature sensitivity approximately 0.5 °C was generally used. The infrared images were 
recorded on a VCR for subsequent analysis. 

3. Heat transfer enhancement calculation 

In steady state, Ojn coming from external heating and entering the protuberance is balanced by 
the sum of heat losses composed of forced convective flux Oconv, conductive flux into the plate 
Ocond and radiative flux Orad: 

Ojn = Oconv + Ocond + Orad (1) 

The heat conduction losses Ocond can be assumed to be small in steady state due to low 
conductivity materials (plexiglass and plastic). Radiative losses are typically less than 1% of 
convective losses for room temperature wind tunnel experiments and can also be neglected. 
Therefore, the primary heat sink for the surface is the convective flux which can be written as: 

Oconv = h (T sur - T reel (2) 

Where h is the convective heat transfer coefficient, T sur is surface temperature and T rec is the 
recovery temperature. 

Since Oconv '" Oin and, assuming that the recovery temperature is close to the freestream 
temperature To, due to the low speed, the convective heat transfer coefficient can be written as 

h _ Ojn 
- (Tsur - To) (3) 

If the heating is relatively uniform (Le., Ojn is constant), the convective heat transfer coefficient in 
the area perturbed by the roughness elements, hR' normalized by convective heat transfer 
coefficient in the unperturbed area hu' (Le. in the smooth area upstream the element) can be related 
to the surface temperatures in the perturbed and unperturbed regions. 

� _ ( T  suru - To ) 
hu - ( T  surp - To ) (4) 

The surface temperatures are measured with the infrared camera and the freestream temperature 
is measured by thermocouples. 

Concerning the relative heat transfer coefficient accuracy, for low speed tests (5 m/s), typical 
values of (Tsur - To) were on the order of 15"C in the unperturbed region and 10"C in the perturbed 
region. Assuming uncertainty in surface temperature measurement of 0.5·C, this would correspond 
to an uncertainty of heat transfer coefficient ratio of approximately 8%. For high speed tests (31 
m/s), (T sur � To) values were typically10"C in the unperturbed region and (5"C) in the perturbed 
region, corresponding to an uncertainty of 15%. 
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4. Test procedure 

Tests were performed for freestream velocities varying from 5 mls to 31 mIs, resulting in local 
Reynolds numbers from 100,000 to 500,000 at test location 25 cm downstream from the leading 
edge. For each test, infrared thermographs of the protuberances region were recorded and the 
relative heat transfer coefficient was calculated versus position in the flow direction. 

Two series of tests were performed with laminar and/or turbulent boundary layers. The first 
investigated the effect of protuberance size for single elements and the second one investigated the 
effect of interaction between multiple protuberances. 

5. Experimental results 

5.1. Individual protuberances 

In order to investigate heat transfer on individual protuberances, the configuration shown in 
figure 2 was tested. The configuration consisted of four spherical roughness elements with heights 
varying from 0.75 mm to 2.8 mm. The elements were slightly shorter than full hemispheres. 
Consequently the base radii were slightly larger than the heights. The center of each element was 
located 25 cm downstream from the plate leading edge and the cross stream separation between 
each element was approximately 3 mm. This configuration was tested with both laminar and 
turbulent boundary layers. 

5.1.1 Laminar Boundary Layer Results 

A typical infrared thermograph of three protuberances (2.8 mm, 0.7 mm and 1.7 mm high) at a 
freestream velocity of 22 mls is shown in color figure A. The flow is from the right and blue color 
indicates colder temperatures in the thermographic image. Significant variation in surface temperature 
and hence, heat transfer, can be seen on each protuberance with the coldest regions (Le., highest 
heat transfer) on the upstream side of the elements. A second cold. region is also observed in the 
boundary layer transition wedge downstream of the protuberance. The 2.8 mm and 1.7 mm high 
elements are seen to be significantly colder than the 0.7 mm high element. 

The heat transfer enhancement profiles for the 2.8 mm high protuberance are plotted in figure 3 
for several velocities. The profiles are taken through the middle of the element and downstream 
distance normalized by the radius of the bead (3 mm). The general shape of the curves are the 
same for each velocity. The heat transfer begins to increase at a distance of approximately 2 radii 
upstream of the elements. A peak in heat transfer is observed on the upstream face at about 1/2 
radius downstream the leading edge of the bead. Then, the heat transfer coefficient decreases 
sharply to the downstream edge of the element. The heat transfer enhancement in the wake is 
typically 50% of the maximum value. Similar profiles were found for other protuberances. 

The peak of heat transfer value, corresponding to the coldest region was found to be located 
approximately 1/2 radius downstream the leading edge of the bead. This maximum heat transfer 
coefficient enhancement is plotted in figure 4 as a function of the local Reynolds number for the 
different roughness elements tested. 

For the small roughness elements, the heat transfer enhancement is observed to be small and 
weakly dependent on Reynolds number in the range tested. For the larger elements, the 
enhancement is larger and is seen to increase with Reynolds number until a maximum at Re = 300, 
000. Above this value the boundary layer is assumed to have transitioned to turbulent which 
increases the heat transfer in the unperturbed region. 

5.1.2 Turbulent Boundary Layer Results 

A typical infrared thermograph for a turbulent boundary layer case at a freestream velocity of 18 
mls is shown in color figure B. The temperature is similar on each element, indicating that the heat 
transfer enhancement is less dependent on protuberance size than for the laminar case. In addition, 
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the enhanced heat transfer in the wake only persists a limited distance downstream of the 
protuberances. unlike the transition wedges observed in laminar cases. 

The heat transfer enhancement profiles observed for the 2.8 mm high protuberance in a turbulent 
boundary layer are shown in figure 5. The observed heat transfer enhancement profiles for the 
turbulent boundary layer are quite similar to those observed with a laminar boundary layer. 
However. the magnitude of the heat transfer enhancement is reduced due to the higher heat transfer 
in the unperturbed reference region. The ratio of heat transfer coefficient is seen to begin increasing 
approximately one diameter upstream of the element until it reaches a peak value of approximately 
2.5. It then decreases to a minimum value at the downstream edge of the element. 

The maximum heat transfer enhancements observed for the turbulent boundary layer cases are 
shown in figure 6 as a function of the local Reynolds number. The maximum heat transfer value 
extends from 1.5 for the small elements to 2.5 for the 2.8 mm tall roughness. The variation with 
Reynolds number is observed to be relatively weak.-It should be noted that. because unperturbed 
heat transfer coefficients are high. the maximum heat transfer coefficients are actually higher than for 
laminar boundary layer cases. 

5.2. Multiple protuberances effects 

In order to study the influence of multiple roughness protuberances on heat transfer. 
configuration shown in figure 7 was tested under turbulent boundary layer conditions. It was 
constructed of 1 mm high. 2 mm diameter wax bead elements. spaced 2 mm apart in a rectangular 
grid. 

The heat transfer coefficient profiles are plotted as a function of the distance from the center of 
the first protuberance in figure B.The infrared thermographs were only sampled at the top of the 
elements and at one point within the gaps.The profiles are quite similar. with the exception of the 
lowest velocity tested (9 m/s). The heat transfer coefficient enhancement is approximately 2 at the 
top of elements and 1.5 in the gaps.These values are approximately identical for all the 
protuberances. 

6. Conclusions 

Infrared technique has been used for high spatial scale measurement of heat transfer variation 
on individual protuberances. Measurements were made on hemispherical roughness elements on a 
flat plate. Significant enhancement in heat transfer was observed on the protuberances and in the 
wake when the elements protruded into the boundary layer. The highest heat transfer was 
observed on the upstream face of the elements. 

For laminar boundary layer conditions. the maximum heat transfer enhancement (referenced to 
the unperturbed flat plane) was obs'erved to increase with roughness element size. Heat transfer 
enhancements as high as 8 were observed for 2.8 mm high protuberances. In addition. some 
enhancement in heat transfer was observed upstream of the element. 

For turbulent boundary layer conditions. the maximum heat transfer enhancement was not 
strongly dependent on velocity for the tested conditions. The peak heat transfer enhancements 
were observed to be between 2.1 ant 2.6 times the unperturbed turbulent heat transfer value for 
the flat plate. 

For multiple protuberances under turbulent boundary layer conditions. it was found that the heat 
transfer on each element was similar to that observed for the individual elements for 1 mm high 
protuberances. one diameter spaced. 

The enhanced heat transfer on the upwind face of the protuberance is consistent with the 
enhanced ice growth observed in previous studies. The observed enhancement of approximately 
2.5 may be useful to predict the initiation of ice growth. The enhanced heat transfer observed 
upstream of the phYSical roughness element for the laminar boundary layer conditions may explain 
observed upstream propagation of the smooth-rough transition boundary observed for some glaze 
ice conditions. 
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Fig 1. Schematic view of the experimental set-up. Fig. 2 Individual protuberances test configuration 
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Fig. 3. Heat transfer coefficient enhancement on a 2.8 mm 
high protuberance in a laminar boundary layer. 

2.6 
2.4 

::s 2.2 0 
I- 2 J: 
a. 1.8 
0 1.6 I-J: 1.4 

1.2 

1
_12 

• v=9 mls 
[] v=18 mls 
• v=27 mls 
o v=31.3 mls 

-8 -6 -4 
Downstream Position x/R 

Fig. 5. Heat transfer coefficient enhancement on a 2.8 mm 
high protuberance in a turbulent boundary layer. 
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Fig. 7. Multiple protuberances test configuration. 
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Fig. 4. Maximum heat transfer coefficient 
enhancement in a laminar boundary layer 
versus Reynolds number 25 cm downstream 
of the leading edge. 
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Fig. 6. Maximum heat transfer coefficient 
enhancement in a turbulent boundary layer 
versus Reynolds number 25 cm downstream 
of the leading edge. 
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