IR detection limit of underground structure by thermal image technique

by OKAMOTO Y*, LIU C.*, FAN Z.* and INAGAKI T.*

*Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki, Japan, 316

Abstract

A thermal image technique had been developed to detect internal flaws of industrial structural elements as a remote sensing device. This method was applied to detect the underground and obscured structural elements, like piping, vessel, concrete and ancient tomb, by solar and artificial heating. Detection limit of underground test pieces was represented by the experiment. Numerical calculation was carried out to analyses heat flow mechanism around the test piece.

Nomenclature

<table>
<thead>
<tr>
<th>Greek Symbols</th>
<th>Nomenclature</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha); heat transfer coefficient</td>
<td>(a); thermal diffusivity</td>
</tr>
<tr>
<td>(\lambda); thermal conductivity</td>
<td>(n); normal direction</td>
</tr>
<tr>
<td>(\theta); dimensionless temperature</td>
<td>(q); heat flux</td>
</tr>
<tr>
<td>(\tau); time</td>
<td>(T); temperature</td>
</tr>
<tr>
<td>(x); horizontal coordinate</td>
<td>(y); vertical coordinate</td>
</tr>
</tbody>
</table>

1. Introduction

An infrared radiometer was used to detect internal flaws, like crack, pinhole and inclusion of industrial structural elements, as one of remote sensing devices. A noble quantitative IR testing method, so called a thermal image detection method, was conducted to detect internal flaws of mechanical components during operation.\(^1\)

The method was carried out by visualizing deformation of radiation temperature distribution of the tested surface above the internal flaws by the active heat injection.\(^2\) The induced non-uniform temperature shows the existence of the internal flaws. And two-dimensional temperature distribution was displayed on the CRT of the infrared radiometer.\(^3\)

The method had been already applied to detect the underground structural elements, like pipe, vessel, pile, concrete slab, for industrial use. A new object imaging and detection of underground structure of ancient remains, like corner stone, stone settlement, shell mound and tomb was conducted by means of the infrared radiometer. The paper represents a preliminary model test of those remains to determine the detection limit of rectangular test plates buried in underground by artificial heat injections of the sun and combustion flame. The temperature and its distribution on the surface above the buried test plates becomes nonuniform and discontinuous.

Such abnormal temperature distribution shows the existence of the underground object. We carried out to determine the detective dimension of the object with the depth \(H \) and width \(b \) as parameters.

Furthermore, transient temperature and heat flow mechanism were analysed by solving a transient two-dimensional heat-balance equation. Numerical calculation result was quite useful to analyses the heat transfer behavior around the underground object. Numerical data were compared with experimental results.

2. Test apparatus and experimental method

Several rectangular test plates consist of styrene foam, concrete, stone and gravel to simulate the object of the ancient remains as already mentioned in section 1.

Figure 1 shows schematic illustration of the test piece. Three buried styrene foam plates, as denoted in A, B and C, are rectangular and buried in the soil of 10, 20 and 40 cm in depth \(H \). Two concrete rectangular plates and gravel layer are also buried in the soil. A stone plate was put on the surface of the soil.

Figure 2 shows the schematic illustration of a test apparatus. The test plates of the styrene, concrete, stone and gravel are buried in the soil. Chromel–alumel thermocouple wires
are set up on the upward and downward surfaces of the test plates to measured the
temperature and are connected to a data recorder. Radiation temperature distribution of the
soil surface with internal test plates is visualized from upward using the infrared radiometer
by solar heating and atmospheric cooling, as shown in the figure. To detect the deep buried
test plates of over 40cm in depth, corrugated cardboard papers on which the light oil was
sprayed are set on the soil surface. The artificial high-flux burning test was carried out by
burning the corrugated papers. After burning up, we removed the ash of the burnt paper.
And we started the observation by the infrared radiometer.

We measured the temperature of the buried test plates by thermocouples and temperature
distribution of the soil surface using the infrared radiometer. Measuring time was about two
days and sampling time of the temperature and IR image was one hour. We recorded also
the solar injected heat flux and air velocity in same time. To obtain the high heat flux
heating, we used fire burning. Time of the fire burning is about five minute. We recorded the
temperature and IR photograph for every one minute during total measuring time of 30
minute.

3. Experimental test result

Fig. 3 shows the thermograph of buried styrene plates at 10cm in depth. Mountainous
temperature distribution shows the existence of the buried plates in zenith.

Fig. 4 shows the thermograph of buried styrene plates in the evening. We can observe the
concave temperature distribution above the buried plates.

Time-dependent temperature distribution of the tested plate at 10cm in depth was
measured by thermocouples, as shown in Fig. 5. According to time-dependent solar heat flux
and atmospheric temperature T_a, the surface temperature T_1 is increasing in the morning
and decreasing in the afternoon with time lag. The temperature change of the surface of the test
plate in the soil T_2 and T_3 is smaller than T_1 and T_a.

Fig. 6 shows the temperature difference of styrene plates A, B, C by thermocouples T_c.
Maximum temperature difference of the big styrene test plate A, as shown in Fig. 1, is 4.5°C
in zenith. Value of ΔT_c in the night becomes minus and decreases to minus 2.5°C early in
the morning.

Figure 7 shows time-dependent temperature difference of the mortar plate and gravel
D, E, G, ΔT_c by thermocouple. The temperature rise of the gravel is largest, and value of
$T_{c_{\text{max}}}$ at D, E, G becomes 4.0 and 8°C.

Figure 8 shows time-dependent temperature difference of the stone S by thermocouple
ΔT_c. The temperature rise in daytime becomes 8°C and the temperature drop in the night
becomes -1 to 4°C which depends on environmental condition, like the velocity, albedo ratio,
heaven and air temperature.

Table 1 represents maximum positive and negative temperature difference of buried test
plates $\Delta T_{c_{\text{max}}}$ at 10cm in depth except datum of the stone settled in the surface. Values
of $\Delta T_{c_{\text{max}}}$ become positive in the daytime near the zenith and negative in the night. Heat
injection condition in the daytime and night is shown in the Table. The artificial high-flux
burning test was carried out by burning the corrugated papers in which the light oil is
contained.

Figure 9 shows thermograph of deep buried styrene plates of 40cm in depth by fire
burning. After burning time of 5 minute, we visualize the hot zone of the buried styrene
plates on the thermograph. The initial injected heat flux is about 5 w/cm².

4 Numerical analysis

4.1. Heat balance equation

Figure 10 shows the numerical calculation model of the buried test piece. A buried
rectangular cavity $EFGH$, thermo-physical properties of which are different from that of the
surrounding space $ABCD$. Solar and combustion flame injects the heat flux q to the surface
AB and the injected heat is transferred to the space by the heat conduction and the
environment to the heat convection and radiation. Temperatures of the space and cavity
$T_1(x,y,t)$ and $T_2(x,y,t)$ are expressed in

\[
a_1(\partial^2 T_1/\partial x^2 + \partial^2 T_1/\partial y^2) = \partial T_1/\partial t \tag{1}
\]
Boundary conditions are shown in

at AB surface; \(-\lambda_1 \partial T_1 / \partial x + (\alpha_c + \alpha_r)(T_1 - T_g) = q(\tau)\)

at BCDA surfaces; \(\lambda_1 \partial T_1 / \partial n = 0\)

at EFGH surfaces; \(\lambda_1 \partial T_1 / \partial n = \lambda_2 \partial T_2 / \partial n\)

Where \(\alpha_c\) and \(\alpha_r\) are the convective and radiative heat transfer coefficients. Solving equations (1) and (2), we obtain the transient temperature of the space and cavity \(T_1(x, y, \tau)\) and \(T_2(x, y, \tau)\).

4.2. Calculation results

Figure 11 shows two-dimensional temperature distribution of the space with the cavity of 10cm in depth \(H\) by solar heating. The solar injected heat flows around the cavity. The expansion flow around the cavity causes mountainous temperature distribution at the surface, already shown in the experimental result.

Figure 12 shows the time-dependent temperature of the buried test piece at \(b=40\text{cm}\) and \(H=10\text{ cm}\). The temperature above the cavity \(T_c\) becomes larger than that of the surface without the internal cavity \(T_s\) in daytime and becomes smaller than that in the night. And therefore, the temperature difference \(\Delta T_c = T_c - T_s\) is shown in a one-dotted line.

Figure 13 shows the time-dependent temperature of the buried test piece at \(b=40\text{cm}\) and \(H=20\text{cm}\). The temperature \(T_1, T_2\) and temperature difference \(\Delta T_c = T_1 - T_2\) are smaller than that of \(H=10\text{cm}\). The temperature difference \(\Delta T_c\) is decreasing with increase in the depth \(H\) and inverse of the width \(b\).

Figure 14 represents the time-dependent temperature difference \(\Delta T_c\) with the depth \(H\) as a parameter. The time which shows the maximum temperature difference \(\Delta T_{c\text{max}}\) by solar heating \(\tau_{\text{max}}\) is increasing with increase in the depth \(H\). And \(\Delta T_{c\text{max}}\) of the soil is increasing with increase in the width \(b\) and inverse of the depth \(H\). We can estimate the depth \(H\) and width \(b\) by measuring the maximum temperature difference \(\Delta T_{c\text{max}}\) and the time \(\tau_{\text{max}}\).

Table 2 shows the relation between the depth \(H\) and maximum temperature difference \(\Delta T_{c\text{max}}\) with the depth \(H\) as a parameter. \(\Delta T_{c\text{max}}\) of the soil is larger than that of the rock and decreasing with increase in the depth \(H\). \(\Delta T_{c\text{max}}\) of the rock becomes smaller than that of the soil. The numerical result represents that we can detect the deep cavity of the soil and rock up to the depth of 60cm. But, we were unable to detect the cavity of over 40cm in the depth by the experiment.

References

Fig. 1 Schematic Illustration of the test piece

Fig. 2 Schematic Illustration of test apparatus

Fig. 3 Thermograph of buried styrene plate (No A,B,C,H=10cm,18:30,23,Nov,1993)

Fig. 4 Thermograph of styrene plate (No A,B,C,H=10cm,11:30,23,Nov.1993)

http://dx.doi.org/10.21611/qirt.1994.048
Fig. 5 Time-dependent temperature of styrene plates A, B, C by thermocouples (17:30, 7, Feb, -- 22:00, 8, Feb, 1994)

Fig. 6 Time-dependent temperature difference of styrene plate A by thermocouples (17:30, 7, Feb, -- 22:00, 8, Feb, 1994)

Fig. 7 Time-dependent temperature difference of mortar plate D, E, G by thermocouples (6:00, -- 22:00, 15, Feb, 1994)

Fig. 8 Time-dependent temperature difference of stone S by thermocouples (6:00, -- 22:00, 15, Feb, 1994)

Table 1: Maximum positive and negative temperature differences of buried plates by fire burning plates ΔTcmax (12:00, 29, July, 1994)

<table>
<thead>
<tr>
<th>Type</th>
<th>daytime</th>
<th>night</th>
</tr>
</thead>
<tbody>
<tr>
<td>styrene</td>
<td>6</td>
<td>-2</td>
</tr>
<tr>
<td>concrete</td>
<td>2.5</td>
<td>-0.5</td>
</tr>
<tr>
<td>stone</td>
<td>8</td>
<td>-1</td>
</tr>
<tr>
<td>gravel</td>
<td>8</td>
<td>-1</td>
</tr>
</tbody>
</table>

q_{\text{conv}} = 10(T - 293 - 5\sin((r - 6)/12) \quad \text{(w/m²K)}

q_{\text{uni}} = 500\sin(r/12), \quad T(0) = 288 \quad \text{K}

6-18 o'clock; q = q_{\text{conv}} - q_{\text{uni}}

18-6 o'clock; q = -q_{\text{uni}} - q_{\text{conv}}