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Abstract: 
 

An infrared thermography equipment is used to measure the temperature rise at the rear surface of 
a sample submitted to the pulse irradiation of a flash source, in order to derive simultaneously two 
thermal properties of the sample. The Levemberg Marquadt technique is used to match the 
experimental data to the analytical model. Care is taken to tune sample features and the experimental 
set-up. Since the acquisition time revealed to be a critical parameter, its influence on the final results is 
investigated too. 
 
1. Introduction 

 
The flash method is extensively used for measuring the solids thermal diffusivity. The 

method essentially consists in measuring the surface temperature rise of a thin cylindrical 
specimen when the other face is radiated by energy pulse. The experimental data compared 
with the predictions of the theoretical model allow to determine the thermal diffusivity. In 
origin the method foresaw the use of one or few points of the temperature-time curve, [1]. 
Actually, the amount of experimental data can be very large, e.g. thermographic systems are 
available with a scan rate of 50Hz.  

Following the idea of the flash method, different models and data reduction techniques 
have been proposed, [2-8]. The data reduction method seems to play a significant role in the 
determination of the thermal diffusivity, in particular the non-linear 2 fit based on the 
Levemberg Marquadt technique is shown to lead to the most precise results, [9].  

In this work, using the above mentioned fitting technique, the simultaneous identification 
of the thermophysical properties, i.e. thermal diffusivity and conductivity, by the classical 
rear-face flash method is attempted. Particular care was taken about the choice of a proper 
acquisition time by simulating thermograms with Montecarlo tecnique. The influence of 
sample features on the results is analysed taking into account infrared thermography 
equipment features. Finally, in order to validate both the experimental procedure and the 
identification routine, first tests were carried out on certified Teflon samples. 
 

2. Basic equations and analytical solution  
 

The identification of the thermophysical properties from the temperature-time profiles 
needs a model for the heat diffusion: a thin sample subjected to a flash heating and cooled 
on both faces by radiative-convective heat transfer is considered. The energy balance 
equation and the related boundary conditions can be written in dimensionless form as: 
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where: =x/L, x being the coordinate through the sample of thickness L; =t/L2,  being 
the thermal diffusivity and t the time; *T(x,t)-Ta]/ΔTrif, Ta being the ambient temperature 
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and Trif = qabs/(cL) is the equilibrium temperature rise for an adiabatic slab due to the pulse 
of radiant energy,c being the volumetric heat capacity and  qabs the energy absorbed at 
wall; (xrif/L) Trif  is the surface temperature rice in a small depth xrif.;  Bi=h L/k is the Biot 
number, k being the thermal conductivity and h the heat transfer coefficient, assumed to be 
the same on both surfaces.  

The unsteady temperature distribution can be obtained in closed form by variation of 
parameters: 
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The characteristic equation and the constants Cm  are: 
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In fig. 1 the temperature evolution of the rear surface, ;1(,Bi)= *(=1,,Bi), is shown for 
different Biot numbers. For the limiting case of an adiabatic slab (Bi0) the maximum 
temperature rise is obtained for  and approaches to one.  

The asymptotic solution for max, i.e. the first term of the summation, is also evidenced 
with the dash-dot line; in particular, the exponential limiting solution shows that, for Bi<<1, 
the temperature rise will depend on a single parameter: (L2

Bi: 
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Having in mind experimental testings based on flash method in order to measure the 
thermal conductivity and diffusivity by means of temperature-time curves, the analytical 
solution requires several additional parameters to be known: Ta, qabs, L and h. In addition,  
for performing the data reduction a further parameter is needed: the data reduction time, tRD. 
The choice of the above parameters will affect the accuracy of the final results in terms of  
and k, except the ambient temperature, i.e. the temperature level at which the unknown 
parameters will be estimated.  

The absorbed energy can be controlled but it is difficult to measure, thus it is convenient 
to work with a new dimensionless temperature normalized with respect to its maximum 
value: 
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the corresponding plots are shown in fig. 2. 
The measure of the heat transfer coefficient is always a critical point due to the radiative 

and convective contributions; the radiative flux can be controlled by painting the specimens, 
while the convective one employing a fan. Thus, the overall heat transfer coefficient can be 
measured by preliminary testing on materials whose properties are certified. 

In summary, the parameters that can be handled in experiment testing are: T1,maxL and 
tRD, the maximum temperature rise, the specimen thickness and the data reduction time. 
These parameters and the two unknown ones, according to the model, are combined such 
as: T1,maxtRD, /L2 and L/k, i.e. the Biot number. 
 

3. Data reduction 
 

The accuracy of the results of the data reduction is related to the parameter sensitivity of 
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the solution in the time domain. The parameter sensitivity can be described, in a first 
attempt, by the normalized sensitivity coefficients, defined as: S=,  being a 
parameter; the parameters will be not correlated if the coefficients are be linearly 
independent. 

Fig. 3 shows the normalized sensitivity coefficients S/L2 and SBi , for ref/L2
ref =0.1s-1, Biref 

=0.1, which lead to max =0.46. The plots show that the unknown parameters are strongly 
correlated for max  and that for max the sensitivity to the Biot number is quite small with 
respect to thermal diffusivity. The behavior for max could be expected by looking at the 
plots of fig. 1 which turn out to be practically independent of the Biot number. On the other 
hand, for >max, the first term of summation becomes dominant and the solution essentially 
depends on the product  Bi, as mentioned before. 

Due to the non linearity of the unknown parameters provided by the model, the 
Levenberg-Marquardt (LM) technique has been chosen as data reduction method. this 
technique is based on minimizing the 2-merit function: 
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each of the N data points, (yi,xi), is weighted with its own standard deviations, i;   y(x, a) is 
the functional relationship given by the model, where a=(a1, a2.. aM) is the unknown 
parameters vector. The LM technique encompass both the steepest descent and the 
inverse-Hessian method, realizing a continuous switching between them, depending on 
being far or close to the minimum, respectively, [10]. The inverse Hessian method requires : 
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where: a=anex-acurr,; b= 


2|acurr is the gradient of 2; A is the Hessian square M x M matrix 
given by: 
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Note that the term containing the second derivative can be cancelled, since the 
measurement error at each point is random. 

The steepest descent method can be put in the same fashion of the above equation if A is 
a constant, i.e. A is a diagonal matrix.  

A dimensionless parameter  is used to weight the diagonal term of the Hessian such as 
the steepest descent and the inverse-Hessian method are recovered for  and  
respectively.  During the iterative process toward the minimum, proper values of the 
dimensionless parameter  allow to switch between the two minimization methods.  

To control the accuracy of the LM technique in estimating the two unknown thermal 
parameters, preliminary tests were performed on Montecarlo simulated thermograms, 
obtained by perturbing the analytical temperature profiles. In fig. 4, a basic temperature 
profile and the corresponding perturbed one are shown up to a dimensionless observation 
time obs=6 max, for ref/L2

ref =0.1s-1, Biref =0.1 and max =0.46 and assuming an uncertainty 
equal to +/-0.05. 

To process the simulated data,  increasing data reduction times are chosen starting from  
the beginning of the phenomenon; in particular RD,n=(n/12) obs, with n=1,2,..12, see fig.4. 
One hundred simulated temperature profiles were performed and, for each data reduction 
time, the values of /L2

and Bi are obtained, searching for the minimum of the 2-merit 
function. The average values and the related standard deviations are plotted in fig. 5 and 6, 
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in terms of /ref and k/kref, the slab thickness and the heat transfer coefficient being 
assumed known. The plots show that for RD < max, i.e. n<2, the diffusivity can be derived but 
the Biot number exhibits a great uncertainty, such as evidenced before by the sensitivity 
coefficients. On the other hand for RD > max, both thermal diffusivity and Biot  number can 
be evaluated; in particular it seems evident that the data reduction time can be chosen as 
RD=3 max, since no meaningful accuracy variation in the target values is attained beyond 
this limit and unuseful data to process can be avoided. It has to be noted that, in agreement 
with the sensitivity analysis, the uncertainty on the thermal conductivity is always greater 
than the one related to the diffusivity. 
 

4. experimental tuning 

 

The experimental temperature-time curves depend on: two unknown thermal parameters, 
 and k, and three experimental set-up ones, T1,max L and tRD=3 tmax, this latter being 
chosen according to discussion of the previous section. 

In order to achieve a preliminar tuning of the experimental set-up, the features of the 
material to be tested and the main characteristics of the thermographic system are to be 
taken into account. The choice of the specimen thickness is expected to be a critical step: in 
fact it influences both the maximum temperature rise and the related time at which it is 
attained. On the other hand, these latter  parameters are also related to the specimen and 
experimental setup properties. With reference to the thermal properties, these can often be 
ghly estimated. Also the flash absorbed energy can be estimated by knowing the flash 
features and by painting the slab surface. The heat tranfer coefficient can be sought to be 
known, as before mentioned. Finally, T1,max and tmax depend essentially on the slab 
thickness and they can be easily calculated according to the model. 

In the following, for instance, assuming ref =0.1 10-6m2/s, kref =10-1W/(mK), qabs=104J/m2 
and h=10W/(m2K), the variation of T1,max and tmax with the slab thickness is drawn, see fig. 
7. As expected, the plots show that with increasing thickness the maximum temperature rise 
decreases, while the corresponding time increases.  

The choice of the sample thickness must be accomplished so that Tmax and tmax turn out 
to be not small when compared with temperature and time resolution of the temperature 
detector; these features will lead to a working range for the slab thickness. 

Consider experiments with thermographic systems, which exhibit temperature resolution 
of 0.05oC at ambient temperature and scan rate of 50Hz. For the above test case, admitting 
a relative error on temperature contained within 2%, i.e. T1,max =5°C, one has to choose 
thickness at least 1.7mm. Wishing 50 measures in one second, one has that the thicknes 
must be greater than 0.4mm. On the other hand, for 0.4<L<1.7mm, no problems exists 
about the time rate, while the temperature rise is greater than the previous limit and can 
affect the level at which the thermal properties will be measured; in addition, the overall heat 
transfer coefficient changes, thus a new calibration is required. 
 

5. Application 

 

A thin certified Teflon sample, L=2mm, is submitted to pulse irradiation of a flash. Both 
base surfaces are black painted, in order to increase infrared emissivity, while the remaining 
surface is made adiabatic. An air fan stabilizes the heat transfer coefficient on both surfaces 
to a measured value of h=10.7W/(m2K). An INFRAMETRICS SC 9000 infrared 
thermography equipment is used to measure the temperature rise at the rear surface of the 
test specimen. The experiments were performed at room temperature and the start time of 
the transient temperature is directly recorded on thermograms.  

First tests were carried out on certified Teflon samples 2/3/4mm thick, obtaining a 
diffusivity value of = (9.4  0.1) mm2 s-1 and  conductivity of k=(0.23  0.02) W/(mK); these 
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values agree quite fairly with the declared values.  
To restate assessments of the previous sections about the influence of the data reduction 

time, as an example, the thermogram in fig. 8 is analysed and results are summarized in the 
following table. 

  
n tRD/tmax k 

W/(mK) 

k/k6 


m
2
/s 

/6 

1 1/2 0,24 1,07 9,42 1,005 

2 2/2 0,22 0,95 9,37 0,999 

3 3/2 0,32 1,40 9,59 1,022 

4 4/2 0,24 1,05 9,43 1,004 

5 5/2 0,24 1,02 9,40 1,003 

6 6/2 0,23 1 9,38 1 

 

The data clearly evidence the behavior discussed in the data reduction section and 
presented in the figs. 5 and 6; in particular, reduction applied to variable times allows to find 
practically the final results after a data reduction time of tRD=2 tmax; once again, it is evident 
that the error on the thermal diffusivity is more contained than the one on the thermal 
conductivity. 
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fig. 1 – dimensionless temperature profiles 
 

fig. 2 – normalized temperature profiles 
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fig. 3 – the sensitivity coefficients 

 
fig. 4 – base and simulated thermograms 
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fig. 5 –thermal diffusivity by simulation 

 
fig.6- thermal conductivity by simulation 
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fig. 7- thickness tuning 

 
fig. 8- 2mm Teflon sample 
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