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Abstract  

 
Foreground  background segmentation is the primary step of most automated 

video monitoring system aiming at object tracking, event detection or scene 
interpretation.  In uncontrolled environments, with dynamic background and lighting 
changes, this basic task is very challenging.   This work is based on the hypothesis 
that the combination of LWIR (8-12 m) and colour cameras can significantly improve 
the robustness of foreground  background segmentation.  An acquisition unit with 
co-aligned thermal and visible fields of view is used.  Starting from a state-of-the-art 
algorithm for moving objects extraction in colour video, we adapted the method for 
processing of “RGBT” video format.  Pros and cons of using thermal imagers in 
outdoor video monitoring applications are discussed.  A preliminary objective 
performance evaluation of detection accuracy is also presented. 

 
 

1. Introduction 

Over the last decade, we saw the appearance of automated video monitoring 
in numerous applications.  To make apart foreground and background pixels is the 
first step of most automated video monitoring system aiming at object tracking, event 
detection or scene interpretation.  Still today, this basic task is challenging when the 
monitoring takes place in uncontrolled environments. 

Most solutions proposed for moving object extraction are based on the visible 
spectrum.  Actually, in brightly illuminated scenes, standard colour cameras provide 
the best information for object segmentation.  However, in outdoor applications, 
darkness and other environmental conditions such as fog, rain and smoke strongly 
decrease the efficiency of standard cameras.  In many applications, achievement of 
zero miss detection rate is a critical requirement and investment in more powerful 
imaging systems is justified.  This opens the way to video systems combining thermal 
and colour cameras.  This work is based on the hypothesis that the addition of LWIR 
cameras (8-12 m) can significantly improve the robustness of foreground  
background segmentation in uncontrolled environments. 

Only recently, thermal imagery has been exploited in video monitoring 
applications, and especially for pedestrian detection [1][2][3][4].  Usually, the fact that 
human skin appears brighter than the background in long-wave thermal imagery is 
used as the main cue for the detection.  However, this constraint is not always 
satisfied, especially in outdoor scenes.  Resorting to others features, like edges or 
blobs characteristics, is often performed. 
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A few research groups previously addressed the combination of thermal and 

colour images.  As widely known in the field of image fusion, the combination of 
thermal and visible images is not trivial.  For this reason, to combine thermal and 
colour information (analytical fusion) rather than performing image fusion 
(representative fusion) is more suitable for automated video monitoring.  In [5], 
objects of interest are first extracted from infrared images along the hypothesis that 
pedestrian are warmer than background.  Selected ROI are then used in both 
spectrums for contour extraction and fusion.  In [6], moving objects are detected and 
tracked independently in each spectrum.  An analysis of object’s temporal 
persistence is used at every frame to select the more reliable sensor.   

The work presented in this paper has the distinctive characteristic of 
combining information from both sensors at pixel level.  More specifically, every pixel 
is classified as foreground or background along its similarity to thermal and colour 
background model.  To provide the required image registration, we developed an 
approach to align both fields of view at hardware level.  Such design can support 
applications requiring large effective depth-of-field, an advantageous characteristic 
comparatively to set-ups with parallel or convergent optical axis. As a starting point 
for background modelling, we selected a state-of-the-art technique developed for 
colour videos [7].  Our original contribution lies in the adaptation of their algorithm for 
the processing of augmented “Red-Green-Blue-Thermal” (RGBT) video format.     

In the next section, we first discuss the pros and cons of using thermal 
imagers in outdoor video monitoring applications.  The subject of section 3 is the co-
aligned thermal / colour platform used for video acquisition.  In section 4, we present 
the codebook background subtraction algorithm in its original form as proposed by 
[7].  Then, we describe how we integrated thermal information in the process.   For 
performance evaluation, preliminary quantitative assessments were achieved in 
order to measure the accuracy improvement obtained from the combination of LWIR 
and visible spectrums.  This is discussed in section 5. 

 
2. Thermal imaging in uncontrolled environment 

In this work, the term “uncontrolled environment” is employed to refer to 
outdoor scenes where illumination and temperature changes occur frequently, and 
where various atmospheric conditions can be observed.  Specific environmental 
condition will not bear an equivalent impact on thermal and visible imaging because 
the properties of radiation propagation in the atmosphere vary greatly with 
wavelength range. 

It worth to mention that the LWIR spectral range (8-12 m) is more suitable 
than the MWIR range (3-5 m) for video monitoring of human activity.  The main 
reason is that emitted radiation from objects at ambient temperature (300 K) peaks in 
this long-wavelength range [8]. This affirmation can be derived from the Planck’s law: 

2897.7
d T   (1) 

where d  is the dominant wavelength, 2897.7 is the third radiation constant in m*K 
and T is the object temperature in Kelvin.  From this relation, a human body, at 37C, 
have a dominant wavelength of 2897.7 / (37+273.15) = 9.3 m.  Another motivation 
to select LWIR sensor rather than MWIR is that, along some studies [9][10], the 
impact of absorption and scattering of fog is less severe in the LWIR waveband. 
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2.1.   Illumination and temperature changes 

Obviously, visible cameras are more sensible than LWIR ones to illumination 
changes.  However, since the sunlight warms up exposed surfaces, long-term 
illumination changes also affect thermal images.  And sunlight does not equally warm 
up all objects of the scene.  Those with high thermal inertia, like water, trees and 
people, will present little changes comparatively to cars or building, which have low 
thermal inertia.  Moreover, dark surfaces with low reflective properties, as asphalt, 
will be more strongly affected by sun’s rays, than brighter objects.  It is why a scene 
observed at 4PM and 4AM appears so differently.  In the first case, asphalt and other 
inanimate objects have been heated all day long and appear warmer than people.   

Since the ability to make apart foreground from background is basically related 
to image contrast, we can state from the preceding remarks that people detection in 
thermal images will usually be easier during cold and overcast days or during very 
hot and sunny days than during the middle window where background objects and 
people appears with the same intensity.  From a similar analysis, we can note that 
accurate extraction of vehicles in infrared imagery is more challenging because they 
quickly adapt to environment temperature.   

 
2.2.  Atmospheric conditions 

A first factor that has significant impact on thermal images contrast is the wind, 
which accelerates warm objects cool down.  Hence, the background will tend to have 
a more uniform temperature and less contrast during strong wind days.  This is 
demonstrated by comparing left and middle column images of figure 1.  

Fog, rain and snow are others climate factors that affect thermal wavelength 
transmission, thus decreasing thermal image contrast.  However, along some studies 
[9][10], and based on our own experience, absorption and scattering in LWIR range 
seem slightly inferior than in visible range.  This can be noticed on right column 
images of figure 1, where a building can be distinguished in the background of the 
thermal image, but not in the colour one.  

 

 
Fig. 1. LWIR and visible images during slight overcast (left), strong wind and 

rain (middle) and snow (right). 
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3. Image registration 

The main distinctive characteristic of our acquisition unit is the hardware 
registration of thermal and colour images.  It provides the major advantage over 
systems with parallel or convergent optical axis that image registration is valid for a 
wide depth of field. 

We use a glass beamsplitter with ITO coating (Indium-Tin-Oxide).  This 
component, shown in figure 2, reflects 93% of 8-12 µm emitted energy and transmits 
about 85% of visible waves.  The LWIR camera used is the ThermoVision A10, which 
has a VO2-based microbolometer detector array of 164 x 128 pixels and a sensitivity 
of about 80 mK.   The Marlin F33C CCD camera (640 x 480 pixels with Bayer filter) is 
actually used as colour sensor.      

To compensate for the distinct cameras resolutions and for the slightly 
different sensors form factors, the colour image is decimated and the thermal image 
is interpolated to produce resulting RGBT images of 328 x 254 pixels.  The bilinear 
interpolation of the thermal image also acts as high frequency filter, thus removing 
part of the image noise. Figure 3 illustrates the achieved quality of the registration of 
thermal and colour images.  For visualization purposes, the red channel of the colour 
image as been replaced by the scaled thermal image.   

 
Fig. 2. Co-aligned LWIR / colour acquisition platform 

 

 
Fig. 3. Visualization of image registration       

 
4. Objects extraction 

Since moving objects are usually the objects of interest in video monitoring 
applications, motion-based segmentation techniques are the most suitable for objects 
extraction.  In this work, a still acquisition platform is assumed, thus no camera 
motion compensation is needed.  For this situation, the most efficient objects 
extraction methods, both in term of accuracy and processing time,  are those based 
on background model subtraction. 
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4.4.  State-of-the-art object extraction methods in colour video 

In the last decade, many efficient background modelling and maintenance 
approaches have been proposed for videos from the visible spectral range.  Two of 
them have brought most attention and have been selected and improved by 
numerous research groups. The first is the Gaussian Mixture Model of [11] and the 
second is the non-parametric kernel-based density estimator of [12]. Their interest 
comes from the fact that they allow modelling of multi-modal background (moving 
background), like those met in outdoor scenes.  They also support the presence of 
foreground objects in the scene during the background model initialization phase.  
Recently, a new non-parametric technique inspired from [12] but based on Codebook 
model [7] has been presented.  This one is particularly well suited for real-time 
applications.  Indeed, they demonstrated in their performance analysis that this new 
method is about three times faster than [11] and [12], with slightly better 
segmentation quality.  It is this algorithm that we selected as a starting point for our 
“RGBT” objects extraction technique.   

In short, a quantization/clustering technique is used to generate a compressed 
form of background model.  Every pixel is represented by L codewords defined by: 

 

 max min
1... , , , , , , , ,k L k k k k k k k k kCW R G B I I f p q MNRL   (2) 

 
,k kR G , and kB  are red, green and blue values, max

kI  and min
kI are maximum 

and minimum observed brightness of codeword k, and f, p and q are respectively the 
number of matches, the time stamp of the first match, and the time stamp of the last 
match.  The MNRL (Maximum Negative Run-Length) is the key parameter.  It stores 
the length of the period (in number of frames) during which a codeword has not been 
matched.  Based on the hypothesis that background pixels are observed periodically, 
codewords belonging to background will have a small MNRL value while codewords 
generated by the temporary presence of an object of interest will have large MNRL.  
Thus, a threshold on MNRL parameter can be used to filter out codewords belonging 
to objects of interest. 

For every new frame, every pixel is associated to the first sufficiently similar 
codeword in regard to its colour and brightness.  If no codeword can be matched, a 
new one is created and added in a cache codebook.  Codewords from the cache are 
promoted to permanent background codebook when they are repetitively matched, 
and codewords from permanent background codebook not matched since a long 
period are deleted.  Typically, mono-modal scene areas will be modelled by only one 
codeword, while multi-modal areas, like swaying trees, will need more codewords.  In 
our implementation, we limited the permanent background codebook to a maximum 
of 10 codewords per pixel. 

The background model maintenance is achieved by updating red, green and 
blue values of the matched codeword via a weighted average.  Here is how the red 
value of pixel x is determined for frame n+1 : 

 

     ,
, 1 1

k n n
k n

R x R x
R x











 (3) 
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The  coefficient defines the learning rate.  A smaller  will bring a faster 

codeword adaptation, thus leading to a lower rate of false detection when quick 
illumination changes occur.  For more details on specific aspects of the algorithm, as 
how colour thresholds are defined, please see the original description in [7]. 

 
4.2.  Integration of thermal information 

Thanks to the alignment of thermal and colour images provided by our 
acquisition platform, we can directly combine information at pixel level.  More 
specifically, we added a parameter kT , for thermal intensity, in the codeword 
representation of every pixel (Eq. (2)).  Like for colour parameters, thermal intensity 
of matched codeword is updated by the weighted average of Eq. (3).   

In order to associate a RGBT pixel to codeword k, a condition on its thermal 
intensity must also be satisfied :   

 
  5k TT x T     (4) 

 
where T is the global standard deviation observed on the 10 first thermal frames of 
the sequence.  Contrarily to colour images, we determine gain and offset adjustment 
for thermal images at the beginning of each sequence.  Thus, a higher gain is applied 
to thermal images of videos grabbed from scenes with poor thermal contrast, leading 
to higher noise.  It is why we decided to relate the thermal intensity threshold to 
standard deviation.  

With our combination of thermal and colour conditions, a pixel is classified as 
foreground if either its colour OR thermal value differs from background codewords.  
The detection mask obtained leads to a minimum miss detection rate, which is 
generally a very important requirement for video monitoring applications.   

 
5. Performance analysis 

5.1.   Accuracy analysis 

In this preliminary assessment of our combination approach, we compared the 
detection accuracy with the one achieved if only visible or thermal information is 
exploited.   For this purpose, we used the Detection Rate (DR) and False Alarm Rate 
(FAR) metrics proposed in [13] : 

 
TPDR TP FN
  (5) 

FPFAR TP FP
  (6) 

 
where TP, FN and FP hold for True Positive, False Negative and False Positive 
detections.  For example, a pixel wrongly classified as foreground (object of interest) 
is a False Positive detection. 

Obviously, these metrics require the availability of references images, 
commonly referred as Ground Truth, in which the correct foreground – background 
classification is defined.   Manual generation of these reference images is a long and 
laborious task.  Thus, the accuracy assessment as been performed on a limited 
number of four video sequences, and on a sample of 10 regularly space frames in 
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each of these videos.  Test sequences have been selected in order to represent 
different observation conditions.  They are illustrated in figure 4 with examples of 
Ground Truth and segmentation results in figure 5.   

 

 
Video A Video B Video C Video D 

Fig. 4. Video A : sunny afternoon;  B : sunrise;  C : sunset; D : cloudy and rainy. 

 

 

 

 

 
Video A Video B Video C Video D 

Fig. 5. Examples of Ground Truth (first row) and detection results from colour 
(second row), thermal (third row), and from RGBT images (fourth row).        
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Table 1 presents cumulated Detection Rate and False Alarm Rate.  For all test 

sequences, we empirically fixed the learning rate  to 7.  It is important to understand 
that since only the matched codewords are updated, a fast learning rate can be used 
without causing early integration of motionless objects in the background model.  We 
also fixed the training period to 200 frames, which represent about 25 seconds with 
our acquisition rate of 7.5 fps. 

Table 1. Comparison of segmentation accuracy.  

Video A Video B Video C Video D Video 
format DR FAR DR FAR DR FAR DR FAR 
RGB 0.82 0.07 0.88 0.78 0.66 0.26 0.94 0.38 

Thermal 0.56 0.15 0.89 0.43 0.84 0.19 0.78 0.48 
RGBT 0.91 0.17 0.97 0.83 0.94 0.27 0.99 0.45 

 
From results of table 1, we first notice that, for all videos, Detection Rate 

obtained with the combination of thermal and colour information is higher than with 
any sensor used alone.   About the comparison of detection accuracy between 
thermal and visible videos, we can note that a better DR was achieved with colour 
images for videos A and D.  In sequence B, the only moving objects are pedestrians, 
which are generally characterized by a good thermal contrast.  It is why a high 
thermal DR of 89% was measured with video B.  For sequence C, grabbed at sunset, 
the thermal sensor outperforms the visible one as predicted because of the low 
illumination.  

Similarly to DR, False Alarm Rate obtained with RGBT video format is higher 
than the FAR measured for each sensor alone.  This error accumulation comes from 
the use of a simple logical OR for the combination of thermal and visible detections.      

A very high FAR of 83% was measured for video B.  The main reason behind 
this is that many bushes and trees are present in the background and a quite strong 
wind was blowing during the acquisition.  Moreover, the small size of the pedestrian 
in video B also contributes to this high FAR.  When objects of interest are very small, 
the number of True Positive detections will be also very small (TP of Eq. (6)), thus 
leading to high FAR.   

We can also remark that FAR measured for video D, grabbed during rain, are 
significantly larger than for video A.  The visible and thermal reflections on wet 
surfaces are responsible of these numerous false detections, which can be clearly 
observed in detection masks of figure 5.  

Another aspect that must be considered in the interpretation of FAR is the fact 
that no image enhancement has been performed on detection masks for results 
presented in table 1.   For comparison purpose, table 2 indicates DR and FAR 
measured after morphological closure and elimination of blobs smaller than 30 pixels.  

Table 2. Segmentation accuracy after mask enhancement.  

Video A Video B Video C Video D Video 
format DR FAR DR FAR DR FAR DR FAR 
RGB 0.81 0.05 0.88 0.47 0.77 0.14 0.91 0.38 

Thermal 0.61 0.14 0.92 0.32 0.92 0.19 0.81 0.47 
RGBT 0.91 0.16 0.97 0.69 0.97 0.20 0.94 0.45 

  

http://dx.doi.org/10.21611/qirt.2006.065



  
5.2   Processing time analysis 

As mentioned in the introduction, an important requirement for automated 
video monitoring applications is real-time performance, and the foreground – 
background segmentation module is generally the processing time bottleneck of that 
kind of system.   In this work, a particular attention has been addressed to this aspect 
and it is precisely for this reason that the Codebook background model has been 
selected as a starting point for the foreground – background segmentation algorithm 
instead of a Gaussian Mixture Model or other non parametric approach. 

Table 3 shows the mean processing time measured on each test video 
sequence.  The processor used was a Pentium IV 3 GHz, with 1 GB of RAM.  Image 
resolution is 328 x 254 pixels.   Results of table 5 do not include detection mask 
enhancement.  Up to 2 ms per frame can be added for the morphological closure and 
small blobs deletion.   

Table 3. Comparison of processing time, in ms per frame.  

Video sequence Video 
format A B C D 
RGB 10.1 12.4 10.2 10.0 

Thermal 2.1 2.3 2.0 2.0 
RGBT 11.1 13.4 11.0 10.7 

 
We can notice that the processing time of every video is quite similar, except 

for sequence B, which is slightly longer.  The high background instability caused by 
swaying bushes and trees is responsible of this observation. Table 3 also illustrates 
the interesting fact that the processing time for the RGBT format is smaller than the 
summation of the processing time required for RGB and Thermal formats individually.     

Extending the results to larger images of 640 x 480 pixels would lead to a 
processing time of about 45 ms per frame.  This corresponds to 22 fps, which is 
largely acceptable for real-time video monitoring applications. 

 
6. Conclusion 

Despite the typically poorer resolution and higher noise level of uncooled 
thermal cameras comparatively to visible spectrum sensors, the addition of thermal 
information improves sensitivity of detection of foreground – background 
segmentation algorithms for outdoor video sequences.  The proposed approach is 
based on a state-of-the-art background model, but optimized for RGBT video 
sequences grabbed with our co-aligned LWIR / colour acquisition platform.  As 
demonstrated by the processing time analysis presented in section 5.2, our solution 
is suitable for real-time video monitoring applications. 

The work presented in this paper is the first step through a real-time object 
tracking system efficient in outdoor environment all day and all year long.  The next 
improvements related to foreground – background aspects will address minimization 
of false detections.  As mentioned in section 5.1, the implemented algorithm leads to 
a very good detection rate, but also to a large false alarm rate that could be 
decreased by the analysis detection mask properties.  Identification of False Positive 
pixels caused by reflections on wet surfaces is an example.  
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Performance evaluation of a new foreground – background segmentation 

algorithm is essential.  As mentioned in the previous section, manual generation of 
Ground Truth images is a laborious task, and the particular RGBT image format used 
in our work doesn’t allow us to use publicly distributed videos with provided Ground 
Truth.  Analysis of others evaluation methods not requiring the availability of 
references images is planned for our future development phases.  This would also 
enable us to quantitatively evaluate the accuracy detection on a more representative 
sample volume. 
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