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Abstract 

Today the infrared thermography is among the nondestructive testing methods (NDT) most used for detection 
and characterization of internal defects in materials. It has become a reference method in industrial installations control. 
As the interpretation of thermal images provided by the infrared cameras is often difficult; therefore, it is necessary; to seek 
new methods fast and reliable for intelligent nondestructive evaluation. In our work we propose a fast method using artificial 
neural networks for internal defects depth evaluation from the thermal contrast. Experimental results have confirmed the 
method efficiency in predicting the defects depths. 
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1.  Introduction 

The use of artificial intelligence methods, such as neural networks in the characterization of subsurface defects 
is a current topic of several research works. In [1] Henrique Fernandes used a neural network to estimate the orientation 
of the fibers in a carbon fiber reinforced polymer (CFRP). In [2] Nazmul Huda has used a perceptron neural network for an 
intelligent method to predict invisible thermal defects in electrical equipment. In [3] and [4] S. Dudzik has used an artificial 
neural network algorithm in defect detection and estimation of their depths with thermal image processing. He made 
principal components analysis (PCA) to reduce the number of neural networks inputs. He used fifteen principal components 
for each recorded sequence. For processing of thermal data used in the training stage, this method required a lot of 
operation and a lot of computing time.  

In this work we exploit the temperature value at a single moment to characterize the depth of the subcutaneous 
defects. This new method represents a considerable gain in memory space and data processing time. The experimental 
results confirmed the relevance and performance of the proposed method. 

2.  Pulsed Infrared thermography 

Pulsed thermography is the most popular methods of active Thermal Control, it consists in excite the inspected 
sample by a thermal pulse and analyze its thermal response (figure 1). The inspected sample response is recorded with 
an infrared camera in digital form for careful analysis to characterize the existing defects[5,6,7,8].There are several 
methods in the literature who studied the thermal responses samples for determining the geometric characteristics of the 
defects such as depth and size. 

 

Fig. 1. Pulsed thermography principle  
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Among these methods, there are recent methods in the nondestructive testing field, there are intelligent methods using 

neural networks 

3.  Artificial neural networks 

An Artificial neural network is a data processing technique inspired by the functioning of biological neurons. It is 
part of the toolbox for researchers who want to make predictions, mathematical models, recognitions geometric shapes of 
objects etc. 

The neural network topology is defined by its architecture and its connections nature, it can be described by the 
layers number and number of neurons in each layer (figure 2). To have a good result in a short time. it must optimize the 
layer number and reduce neurons number. 

 

Fig. 2. Neural network with three layers : depth estimator from standard contrast value at instant ta C(ta). 

 

Fig. 3. Mathematical representation of formal neuron j with n inputs (xji) and one output (Sj). 

 
Neural networks are composed of interconnected elemental data processing units called formal neurons 

(figure_3); they are able to learn from their input information (xji), and perform logical, arithmetic and symbolic complex 
operations to get in its output (Sj) the desired result. 

3.1. The formal neuron  

The formal neuron can be represented by a cell with multiple inputs and one output, and it can be modelled by 
two operators: 

 a summing operator who develops a " postsynaptic potential " pj of neuron number j equal to the weighted sum 

of the cell inputs plus a constant term called bias that may be considered as the weight of x0 for entry equal to 1: 

𝑝𝑗=𝑏𝑗+ ∑ 𝑤𝑗𝑖𝑥𝑗𝑖
n
i=1                     (1) 

Where, xji describe the neuron number j inputs and wii is the connections weights. 

 a decision operator f(pj) calculates the output state (sj) of the neuron according to its potential pj; this operator is 

called "the activation function”: 

     𝑠 𝑗=f(𝑝𝑗)          (2) 
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The neuron state is obtained by calculating the post-synaptic potential with the decision operator. The calculation 
is called neuron update [9]. 

3.2. Neural Networks Learning 

The network learning is made by synaptic weights (wji) modifications until the desired result is obtained. There 
are two major types of learning: The supervised learning in which the network is forced to converge towards a specific end 
state, by comparing outputs with the expected targets (learning with a teacher). It is a suitable learning for function 
approximations. 

The second is the unsupervised learning (or self-organizational) where the network is left free to converge to any 
final state. In this case, the network will change as the statistical regularities and correlations that it discovered in the 
learning inputs (Redundancy Provides knowledge). This last type of learning is suitable for tasks and associative groupings.  

On the basis of learning rules, the network weights modifications are automated by the use of trainings algorithms. 
The backpropagation algorithm of the gradient error developed by D.Rumelhart [10] is currently the most used in neural 
networks supervised learning. It minimizes an error function "E" expressed from the squared errors, for an input-output 
pair (dk,sk) of the neuron with the index k Eq. (3). 

 

E = 
1

2
∑ (𝑑𝑘  − 𝑠𝑘  )2n

k=0                                                                                                            (3) 

 
The algorithm propagates the errors from layer to layer according to the importance of the elements that produced 

errors. This process is repeated for several iterations until converging to a very low error value E. 
It is dangerous to continue incessantly the learning phase without control; the training phase of a neural network 

is made, when the obtained synaptic weights provide the desired data without error. At this stage, in fact, the neural network 
is not wrong in his predictions, but there is a huge risk that these predictions are accurate for only the data on which the 
learning was based. This is called overfitting. We prevent the overfitting by dividing the data into two: training data and 
validation data. The training data will be used in the algorithm which provides the best values of synaptic weights. The 
validation data do not intervene in weights determining; They stop learning in the iteration preceding the overlearning.  

In practice, we divide the learning data into three data sets: the training phase part, the validation part and a last 
one for the testing phase. The learning phase is often stopped when the calculated error becomes small. After the neural 
network is well trained (after learning), it is necessary to test it on a different database than those used in learning. This 
test allows both to assess the neural network performance and detect the type of data that cause problems [11]. 

4.  Principle of the method 

4.1. The model used 

To apply the neural network in estimating defects depths; we consider an aluminum sample with dimensions 350 
mm x 200 mm x 15 mm (figures 4 and 5), this sample contains triangular defects located at various depths ranging from 2 
to 7 mm[12].The duration of the heat pulse is few microseconds. 

 
 

Fig4. 3d view of controlled sample 
 

Fig5. 2d view of controlled sample 

4.2. The standard thermal contrast: 

The use of the standard thermal contrast to reveal the presence of defects is very wise for several reasons. The 
standard thermal contrast C(t) Eq. (4) is defined as the ratio between the defective area temperatures differences and 

those of the non-defective area, these temperature differences are calculated between the instants t and t0 [13]: 
 

                 C(t) =
𝑇𝑑(t)-𝑇𝑑(𝑡0)

𝑇𝑠(t)-𝑇𝑠(𝑡0)
       (4) 
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Fig. 6. Contrast variation with time 

 
 
 

 
Fig. 7. Contrast variation with depth at ta=0.5s 

 

The figure 6 shows the standard thermal contrast variation with time for ranging depths from 2mm to 7 mm. We 
can notice a correspondence between the depth of the defects and the thermal contrast at all measurement times. We 
notice that the standard thermal contrast reached important values in the time interval [0.4s, 1.4s]. In our work we will take 
as measurement instant a moment that belongs to this range. We took the instant ta=0.5s. 

We reported in figure7 the standard thermal contrast variation with depth at the instant ta=0.5s for different heat 
flux densities. We notice that the curves are superposed; so the standard thermal contrast is independent of the applied 
heat power, this represents a considerable advantage of using it in neuronal method. We also remark that for depths 
superior to 8 mm, the contrast is almost the same and tends to 1, which shows the limit of the pulsed thermography 
application for deep defects. 

According to the figure 7 curve shape, we will use non-linear regression between the defect depth and the thermal 
contrast at time ta. For that, we will use neural networks to deal those problems. 

4.3. The chosen neural network 

In this work, a feed forward artificial neural network is used to determine the defect depth; we used a supervised 
learning because it is the most suitable for functions approximations. By the finite element method at the instant ta=0.5 s, 
we calculated the standard thermal contrast (Eq. 1) for 560 depths, ranging between 1mm and 10mm, they are used as 
the network training inputs values. The outputs are the corresponding depths contrasts chosen on entrance. We divided 
the 560 learning couples (contrast-depth) according to the percentage 70% for network training, 15% for validation and 
15% for testing the network performance. 

The neural network structure choice represents a very important step; it consists on setting the number of network 
layers, the number of neurons, the activation function and the learning algorithm to use. 

To set the used number of layers and the activation function, we relied on the work of Cybenko and Funahashi 
[14] which showed that a single hidden layer using sigmoid activation functions is sufficient to approximate any non-linear 
function. It must be noted that the neurons of the input and the output layers are not really computing neurons, but they 
have the utility to normalize the input signals distribution and the output signals compilation, the identity function is used 
on the neurons of this latter as activation function. 

We used an incremental approach where we start the learning with a minimal number of neurons (equal to one) 
in the hidden layer, then adding each time a new neuron and comparing the error of the new network with the previous 
one. The process ends when adding a new neuron will not improve the precision. The neuronal performance is calculated 
by the mean square error between the real output values si and the desired values di (Eq. 5). 

 

mse = 
1

n
∑(𝑑𝑖  −  𝑠𝑖  )2

n

i=0

                                                                                                  (5) 

             
 

10.21611/qirt.2016.110

700



 

Fig. 8. Effect of hidden layer neurons number of the   on network performance 

This method allows the use of networks with reduced neurons number in a small interval of learning time. In our 

case the use of 10 neurons gave the best results (figure 8). 
To select the learning algorithm that we will adopt, we compared the results of 14 types of backpropagation 

algorithm among the most frequently used (table 1). We found that the Levenberg-Marquardt algorithm gave the best 
result. It gave a low mse gap with a minimum of iterations. 

 
Table 1. Performance of the different backpropagation algorithms tested in the learning process. 

Backpropagation algorithm Acronym mse iterations 

LevenbergMarquardt TRAINLM 0.010908 24 

BFGS Quasi-Newton TRAINBFG 0.16383 23 

ResilientBackpropagation TRAINRP 0.04997 236 

ScaledConjugate Gradient TRAINSCG 0.03201 57 

Conjugate Gradient with Powell/Beale Restarts TRAINCGB 0.02483 82 

Fletcher-Reeves Conjugate Gradient TRAINCGF 0.02644 100 

Polak-RibiéreConjugateGradient TRAINCGP 0.50123 34 

One StepSecant TRAINOSS 0.53158 22 

Bayesianregulation TRAINBR 5.8053 1000 

Gradient Descent TRAINGD 0.04818 1000 

Gradient Descent with Adaptative learning rate TRAINGDA 0.08571 164 

Gradient Descent with Momentum TRAINGDM 4.1565 115 

Gradient Descent with Momentum and Adaptative learning rate TRAINGDX 1.2099 8 

RandomWeight/BiasRule TRAINR 9.6076 1000 

 

4.5. The simulation results: 

We reported in figure 9 the mean squared error (mse) variations obtained by the Levenberg Marquardt algorithm 
in the three stages, training, testing and validation. We note that the neural network has given a good result (smallest value 
of mse) after 24 iterations. 
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Fig. 9. The variations of the mean squared error (mse) in the network learning phase  

 
To highlight the relevance of the used neural network and algorithm; We reported on figures 10,11 and 12 the 

obtained depths values by the network (ordinate y-output) as function of the desired depths (abscissa x-target) for the three 
data sets, training, validation and testing. The linearity between the x and y  is highlighted by the Pearson coefficient R(x,y) 
(Eq. 6) [15]. 
 

𝑅(𝑋, 𝑌) =
𝐶𝑂𝑉(𝑋,𝑌)

√𝑉𝑎𝑟(𝑋)𝑉𝑎𝑟(𝑌)
            (6) 

 
A good correspondence between the ordinates and the abscissas is translated by R value close to one. 

 
 

Fig. 10. The network training phase 

results 

Fig. 11. The network validation 

phase results 

Fig. 12. The network testing phase 

results 

 
The output values are represented by circles, The good correspondence (output = Target) is indicated by a dashed 

line and the linear regression is drawn by a dashed line. The obtained Pearson coefficients For the three sets of data, 
training ( R=0.99887), validation (R=0.99958) and test (R=0.99913), shows a good linearity; We also noticed that the linear 
regression and the perfect match are juxtaposed and it is difficult to differentiate them; this results reflects a good match 
between the obtained depths (output) and the desired depths (target).These figures show that the chosen network has 
been successfully trained; and therefore confirm the robustness of the established neural model in defects depths 
prediction with the thermal contrast C(ta=0.5s) in network input. 

 
 
 
 

10.21611/qirt.2016.110

702



Table 2. Gap between estimated depths by our neural network and the desired depths  

 
We reported in table 2 the new values of depths estimated by our neural network and the desired depths.These 

depths were not used in the learning process.We note that the provided depths by the neural network are close to the 
target ones. The gap is less than 3%. 

5.  Experimental validation 

To confirm the robustness of the established neural model in defects depths predicting using the thermal contrast 
C(ta=0.5s) as input. We calculated the standard thermal contrast from the measured temperatures[12] on an aluminum 
sample which contains defects located at 3mm, 4mm and5 mm (figure 13). 
 

 

Fig. 13. Experimental Surface temperature variation of aluminum sample with defects placed at different depths. 

 
Unlike other researchers, for each depth, we used the experimental thermal contrast C at the instant ta = 0.5s as 

input in our artificial neural network. In table 4 we have transcribed the real depths values and the estimated depths values 
by our neural network. 

Table 4. Comparisons between the estimated depths by the network and the real depths 

The real defect  

depth (mm) 

The estimated 

depth (mm) 

Gap (%) 

3mm 3.0878 3 

4mm 4.0428 1 

5mm 5.1638 3 

 

 
Table 4 confirms the effectiveness of the proposed method with experimental measurements of the surface 

temperature. Indeed, gaps between the real defects depths and those estimated by our neural network from the thermal 
contrast are very low, it does not exceed 3%. 

 
The proposed method uses a single input (contrast at the instant ta) to determine the defect depth. which 

represents a considerable gain in computation time and memory space, and an interesting progress in the treatment of 
thermograms for the defects characterization. 

The desired 

depth (mm) 
2.7 2.9 3.3 3.9 4.3 4.9 5.3 5.9 6.3 6.9 

The estimated 

depth (mm) 
2.705 2.876 3.305 3.876 4.308 4.906 5.263 5.850 6.152 6.738 

Gap (%) 0.17 0.84 0.15 0.61 0.17 0.12 0.68 0.84 2.34 2.35 
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6.  Conclusion  

A standard thermal contrast values treatments technique using artificial neural networks is used in predicting 
defects depths. The difference between the obtained depths by the neural network and the real depth is very low; it does 
not exceed 3%. The proposed method requires less data processing, which is a progress in data processing of the pulsed 
thermography. 
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