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Abstract 

It has been recently proposed to use the TSR coefficient images to detect defects in structures. The ability of 
this approach has been qualitatively achieved and compared to well-established processing methods: PPT, PCA and 
HOS. Based on the highest number of detected defects, the TSR-coefficient images appeared to be at least as good as 
or even better than the images produced by any of the other techniques. No matter how definite this result is, it still can 
be objected that a more thorough comparison, based on the assessment of several unbiased parameters, is needed. To 
address and overcome this lack, the present paper carries on the comparative study over the following metrics: the 
contrast-to-noise ratio, the sharpness of the defect edges and the accuracy of the identified characteristic dimension of 
the defect using the contrast full-width at half-maximum (FWHM). Once properly defined, these parameters are assessed 
for the TSR coefficient profiles in the defective zones, as well as for the PPT, PCA and HOS images. Final, quantitative 
conclusions on the most appropriate method are then deduced and discussed. 

1. Introduction 

It has been recently shown that the images of the logarithmic polynomial coefficients, used to fit the pulse-
heating thermograms and reduce their noise, according to the Thermographic Signal Reconstruction (TSR) technique [1-
4], could be directly used to provide a unique all-defect-imaging map [5]. The ability of this approach to detect defects 
has been compared to well-established methods: PPT (pulse phase thermography), PCA (principal component analysis) 
and HOS (high order statistics). Based on the highest number of detected defects in a coupon with well-known artificial 
embedded defects, the TSR method appeared at least as good as or even better than any of the other techniques. No 
matter how definite this result is, it still can be objected that a more thorough comparison, based on the assessment of 
several unbiased parameters, is needed: this is the aim of the present work. 

After a brief recall of the TSR technique, and the description of the experimental data that will be exploited, the 
methodology followed for the quantification of the “quality” of the defect detection and imaging is presented. It is based 
on the definition of three metrics: the contrast-to-noise ratio (CNR), the sharpness of the defect edges and the accuracy 
of the identified characteristic dimension of the defect using the contrast full-width at half-maximum (FWHM). These 
parameters are first assessed for the TSR coefficient profiles in the defective zones, and then for the PPT, PCA and 
HOS images. Final, quantitative conclusions on the most appropriate method are then deduced and discussed 

2. Recall of the TSR coefficient images method 

The TSR method initially developed for pulse thermography [1-4] and recently for step-heating [6,7] consists in: 
- The fitting of the experimental log-log plot thermogram by a logarithmic polynomial of degree n: 

      

€ 

ln10(ΔT ) = a0 + a1 ln10(t ) + a2 [ln10(t )]2 +… + an [ln10(t )]n   (1) 

with ΔT the temperature increase as a function of time t (thermogram) for each pixel (i,j). This fitting replaces the full 
sequence of temperature rise images, ΔT (i,j,t) by the series of (n+1) images of the polynomial coefficients: a0(i,j), … 
an(i,j), from which a full thermographic sequence can be rebuilt. 

- The computation of the 1st and 2nd logarithmic derivatives of the thermograms, the derivation being achieved directly 
on the polynomial, with a limited increase of the temporal noise. 

The sequences of images of the derivatives can be either qualitatively observed to detect defects (Figure 1), or 
quantitatively used to evaluate the depth of defects from characteristic times. The so-obtained defect images may have 
better signal-to noise ratio (SNR) and sharpness than the crude thermographic images, but it is necessary to select 
several images, each one being adapted to a specific depth range in relation with the possibly existing defects. This is 
the “classic” use of the TSR method. To lead to precise derivatives, the degree of the fitting polynomial must be high. For 
instance, it was empirically found that n=11 was a satisfying degree for delamination-like defects [5]. 

It has been recently proposed to use directly the images of the polynomial coefficients to detect the defects. 
Even better, it was shown how to build a unique “composite” image of the defects (see Figure 1) by projecting a trio of 
coefficient images in an RGB basis [5]. For delamination-like defects, the best detection was obtained for the polynomial 
degree n=7, which happens to be lower than the one required for a proper use of the derivative images.  
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Figure 1. Defect detection by the TSR method. 

3. Analysed data 

The experimental data previously used for a qualitative study [5] is considered again. It results from the 
recording of the time-evolution of the front-face temperature of a 270×200×5.25 mm3 carbon/epoxy composite plate, 
already studied in the past [8,9]. The coupon, coated on both faces by a black, thin, carbon layer, contained 80 µm-thick 
Teflon® inserts of various sizes and depths (see Figure 2).  

The pulse thermography test was performed with two Elinchrom flash lamps delivering a pulse of total energy 
6 kJ in 4 ms. Temperature images of 320×256 pixels were recorded during 60 s at a frequency of 200 images/s, with an 
integration time of 230 µs, by a CEDIP Jade LWIR camera. Other tests have been performed more recently on the same 
coupon, with a FLIR X6540sc infrared camera, with a better spatial resolution (640×512 pixels) and fewer defective 
pixels (“dead” or erratic) [10]; however, this paper is based on the first set of data since it has been more extensively 
studied and already processed with the previously mentioned techniques (TSR, PCT, PPT and HOS) [5]. Consequently, 
the metrics here evaluated, which depends on both the performance of the thermographic acquisition system and the 
data processing methods, are not representative of the best of the present state-of-the art and have only a relative value, 
nonetheless useful and relevant for the assessment and comparison of these data processing techniques. 

 

 
 

 Figure 2. Tested carbon/epoxy coupon with its artificial defects. 

4. Methodology of evaluation of the parameters characterising the defect images: contrast-to-noise ratio, 
sharpness and lateral dimension 

To quantitatively assess the defect detection based on the coefficient images, several parameters need to be 
identified. These parameters are different depending on whether the grey-tone polynomial coefficient images or the RGB 
colour composite image are considered. In this study, the grey-tone images of the polynomial coefficients are only 
considered. The studied parameters are: 
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-  the signal-to-noise ratio (SNR) of the contrast, which will be referred as the contrast-to-noise ratio (CNR) from now on, 
-  the sharpness of the image, 
-  the characteristic dimension of the defect image compared to the actual one. 

The first difference between the present work and previous quantitative comparisons of data processing for 
pulse thermography lies in the fact that the assessment of the defect signatures is usually based on time-dependent 
parameters, such as temperature rise, contrast, or logarithmic derivatives, which makes it necessary to analyse their time 
evolution [4] or to define the proper observation times, for instance when maximum contrasts occur [11]. In the present 
work, the approach radically differs since it is based on the coefficient images, each one of them integrating information 
linked to the full duration of the experiment.  

The second difference lies in the very definition of the CNR. Most authors have considered the mean value of 
the signal in the defective area [11,12], the limits of which are difficult to evaluate when the bluntness is important. The 
present approach consists in the analysis of profiles along lines crossing the regions of interest (ROIs), i.e. the defect 
signatures and their surroundings. Figure 3 presents the a5 TSR coefficient image with the superimposed grid of rows 
and columns for which coefficient distribution is explored. The size of the image is 194×166 pixels and a pixel equals 
0.87×0.87 mm2. Hence the nominal defect dimensions, Dd, of 23 px, 11.5 px and 3.5 px respectively for the largest 
inserts (20×20 mm2), the intermediate-sized ones (10×10 mm2) and the smallest ones (3×3 mm2). These characteristics 
are reported in Table I given further. 

The profile along row 85 of the TSR coefficient of rank 5 of polynomials of degree 7 (a5/7) is given on Figure 4 as 
an example, highlighting the ROIs corresponding to the defects of medium size. A few pixels presenting isolated erratic 
amplitudes can be spotted. They are due to the low quality of the used camera. For the analysis of the coefficient 
profiles, such pixels have been replaced by the mean of the two adjacent pixels when presenting a gap higher than three 
times the standard deviation of the noise. The reason is that the parameters are deduced from the local coefficient 
profiles and that such deviant pixels induce large, non-physical, errors in their evaluations.  

 

                         
 

Figure 3. a5/7 TSR coefficient image with the super-
imposed grid of rows and columns along which metrics 
are evaluated. 

 

   Figure 4. Distribution of the a5/7 coefficients along row 85. 
 

 
4.1. Contrast-to-noise ratio (CNR) 

 
The CNR may be considered as the ratio of the maximum power contrast (CAmax

)2 to the square of the standard 
deviation σs

2 of the sound zone in the vicinity of the defects:  

CNR = (CAmax
/σs)2  ,    (1) 

where CAmax is the maximum of the amplitude contrast between a defect and the sound zone. The CNR can be 
expressed in decibels as follows: 

CNR = 10 log10[(CAmax
 / σs )2] = 20 log10(CAmax

 / σs). (2) 

In practice, for the search of the maximum contrast of a defective zone, two cases are possible (see Figure 5): 
- the defect has a large lateral extent (high aspect ratio AR = Dd/zd), so that its contrast signature shows a plateau 

(Figure 5a), 
- the defect has a small lateral extent (low aspect ratio), so that its contrast signature shows a Gaussian-like shape 

(Fig. 5b). 
In the following figures, the pixels identified as parts of the sound material baseline in the region of the defect, 

along a line (row or column) getting close to the centre of the defect, are represented by black circles, the defect plateau 
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by light grey circles, and the defect edges by white circles. When the plateau does not exist the defect signature is 
represented by white circles. 

The baseline, the plateau and the edges are locally fitted by least-mean square polynomials (generally of 
degree 1). When no plateau can be defined, a fitting operation is performed, using a degree 2 or higher polynomial. The 
fitted values obtained for the central zone of the defect are then used to assess either the contrast between the plateau 
and the baseline, in the case of a high aspect ratio, or the maximum contrast if no plateau is spotted, in the case of a low 
or medium aspect ratio. 

The noise is assimilated to the standard deviation of the points of the baseline, σs, allowing the evaluation of the CNR. 
 

 
 

Figure 5.  Quantitative characterisation of a defect signature. (a) Defect #1-1: no strong 3-D effects due to lateral conduction 
(large aspect ratio defect, AR = 50); (b) Defect #3-1: 3-D effects due to lateral conduction (medium aspect ratio, AR = 7.5). 
 
4.2. Sharpness metrics 

 
Almost all works aiming at quantitatively comparing data processing methods for thermographic NDE are based 

on the sole CNR parameter. This approach does not take into account the sharpness, which appears to be another 
relevant parameter regarding the quality of the infrared image. The main reason may be the difficulty to define a metrics 
to characterize it [12]. A second explanation can be added: most of the comparisons are based on coupons including 
defects of simple and known shapes, most currently square or circular defects, which helps for the detection and 
consequently gives less importance to sharpness in the recognition and detection of defects.  

Until recently, very few research scientists [4] felt concerned by IR image sharpness, people essentially giving 
attention to CNR. So, just one measurement of sharpness of IR defect images has been encountered in the literature 
[12]: the authors chose as sharpness metrics the magnitude of the gradient existing at the edge of the defect, the border 
between defective and sound zones. The gradients are calculated by finite differences from the pixel intensities of this 
zone, along orthogonal directions (columns and rows). The sharpness metrics is defined as the square root of the sum of 
the squares of the x and y gradients. This evaluation is made directly on the thermogram when the contrast is maximum 
so that both parameters (CNR and sharpness) are calculated at the same time.  

In the present work, these evaluations are done for the three coefficients a5/7, a6/7 and a-7/7 from which the RGB 
composite image is elaborated (see [5]). The sharpness metrics is calculated from the locally fitted signal, according to 
the formula given in Figure 5a. The metrics is normalized to facilitate the comparison between the different defect 
signatures. For that, the gap between the plateau of contrast, when existing, and the sound material baseline is set equal 
to 1 for each defect, resulting a metrics value between 1 (when there is no pixel between the fitted plateau and the fitted 
baseline) and 1/(n+1) (when there are n such pixels). An arithmetic mean is calculated for both sides of the plateau for a 
given line (row or column). In the case of a medium or low aspect ratio, the plateau disappears and this procedure does not 
work. No identification of the sharpness is made in this case. 
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4.3. Defect lateral extent  
 
Pulse infrared thermographic images contain defect images of time-dependent dimensions. Defects seem to 

shrink when time increases, due to edge effects caused by lateral heat diffusion. Almond et al. [13,14] have 
demonstrated that, in the case of pulse-heating, the lateral dimensions of a defect can be deduced from a linear 
extrapolation to the origin of time (the pulse occurrence time according to the authors, or better, the emerging contrast time 
as the present authors recommend), the defect full-width at half-maximum contrast (FWHM) being directly measured on 
the images as a function of the square root of time. This extrapolation, similar to what is proposed by the early detection 
approach to identify defect depths [15], mitigates the effects of the lateral diffusion. As pointed out by the authors, the 
method fails for defects of very low aspect ratios. In fact, it cannot be applied when the plateau disappears (Gaussian-
shaped contrasts). 

In the present case, only one image is to consider, a coefficient image, not a sequence of time-evolving 
thermogram images. By analogy with Almond’s method, the FWHM is measured in the TSR coefficient images. That 
would be a priori less efficient than the original Almond’s method since the coefficient images are influenced by the full 
thermogram (ΔT(t)), including late information suffering from diffusion effects. Furthermore, this identification is only 
applied to defect images presenting a plateau, such as defect #1-1, as illustrated by Figure 5a. 

 
4.4. Validation of the profile analysis procedure 

 
To validate the present procedure based on profile analysis in the coefficient images, it is necessary to assess 

the scatter due to the choice of the analysed profile. That has been done for defect #1-1 in the a5/7 image (Table 1). The 
scatter from various profiles crossing the same defect is assessed for three column profiles (20, 23 and 27) crossing 
defect #1-1 (Figure 3 and Table 1(a)). The scatter is low, around a few percent for contrast (3.1%), CNR (1.8%) and 
FWHM (1.7%). The noise and sharpness metrics are slightly higher (7% and 6%, respectively). This shows that it is 
possible to carry out such evaluation on a unique profile for a given defect.  

Since these profiles can be taken either from a row or a column, the results obtained for column 23 intersecting 
row 18 and for row 18 intersecting column 23 are compared in Table 1(b). The ratios of the identified parameters are 
given in the last column: differences lower than 10% are noticed for contrast, CNR and FWHM. Noise values are a bit 
higher (13%) and sharpness values are much higher (55%). The accuracy on the identified defect dimension using the 
method presented in section 4.3 is quite remarkable (errors < 5%). Such results lead to consider a unique profile for each 
defect, indifferently from a row or a column. From now on, only rows are analysed. 

The order of magnitude of the noise of the sound material zones appears rather uniform on the full sample 
(standard deviation varying between 0.0030 and 0.0057). The CNR appears to depend on both the depth and the 
characteristic dimension of the defects. The ratio of these two parameters is the governing parameter of the CNR as 
shown in Figure 6(a). For the rectangular defect (10×20 mm) the characteristic dimension is taken as the square root of 
the surface. It is important to notice that the curve of Figure 6(a) is specific of the infrared camera used. Indeed, if the 
contrast is linked to the defect characteristics and mean thermal properties of the material, the noise depends on the 
performance of the camera and on the heterogeneity of the material/structure. 

The sharpness metrics (SM), only to be considered when the contrast presents a plateau, appears correlated to 
the defect depth as shown in Figure 6(b). The law SM(1/zd) seems to have an asymptote for zd approaching 0.1 mm: 
SM = 0.1/zd, SM being evaluated in pi-1 and zd in millimeters.  

The accuracy of the identification of the characteristic dimension of the defect, Dd, taken as the square root of 
the insert surface, using the FWHM of the contrast when a plateau exists is shown in Figure 6(c) as a function of the 
reciprocal of the aspect ratio AR. The relative errors follow a near linear variation with 1/AR:  

 (3) 

 
Table 1 - Image analysis of defect #1-1: (a) discrepancies between column profiles across the defect (analysis following 
columns), (b) comparison between column and row analysis. 
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(a)                       (b)                        (c) 

 
Figure 6. (a) Influence of the reciprocal of the aspect ratio of defects on the CNR; (b) Influence of the defect depth on the 
sharpness metrics (considering only the cases leading to plateau-shaped contrasts); (c) Accuracy of the identified defect 
dimension using the FWHM metrics (considering only the cases leading to plateau-shaped contrasts). 
 

This relation is verified by a factor of ± 2. The FWHM for contrasts that do not present a plateau leads to large 
positive errors. Thus it is not considered. The accuracy of the defect dimension estimate, evaluated as 
log10(|Dd/ΔDd|FWHM), is the third parameter used for the comparison of images. 

5.  Application to the TSR coefficient images and comparison to the images issued from the other three 
techniques. 

5.1. Semi-quantitative analysis of the profiles along rows of the images 
 
Before applying the procedure described above to compare the quality of the images obtained by the TSR 

coefficient techniques and those of the other three considered techniques (PPT [16,17], PCT [18,19] and HOS [20]), a 
first simple comparison can be done, consisting in comparing the profiles along rows of the images. Four rows have been 
selected, one chosen in the sound zone, with no defect to cross (row #59), which permits to estimate the background 
noise level and the other three crossing the whole collection of defects, allowing the assessment of the defect local CNR, 
edge sharpness and FWHM taken as lateral dimension. All analyzed profiles, for the four techniques, are presented in Figure 7.  

 
5.1.1.  TSR images 
 

The three graphs of the top row of Figure 7 show that, considering the CNR the sensitivity of the TSR technique 
to detect defect appears to be less dependent on the defect depth than for the other techniques, at least considering the 
odd images (5/7 and -7/7). As regard the background noise, the TSR images have a medium noise level, almost identical 
for the three images. This noise is almost uniform, not influenced by the material structure, which is in favour of a better 
defect detection, and identical for the three images. As said in Section 4, the TSR coefficient images seem particularly 
sensitive to the existence of erratic pixels. The profiles in Figure 7 correspond to the images after replacing those pixels 
by the means of the two immediate neighbours. The impact of this treatment is moderate, changing for instance the initial 
normalised standard deviation of image TSR 5/7 from 14.6% to 11.3%. 

The sharpness of the two odd images is much better than the one of the even image, as verified for all TSR 
images [5]. This lower performance was somehow expected since the even image was selected not for its high quality, 
but because it contains a defect which is barely visible in the odd images (defect #2-3). 

It should be noted that no parameter values were estimated for defects #3-2, 3-2** and 3-3, since their aspect 
ratios are too low to be discriminated from noise, and for #3-4*, which is affected by the overlap with #1/2-2*.  

 
5.1.2.  PCT images 
 

The sensitivity to defect appears to rapidly decline with defect depth. The noise increases with the order of the 
component. In particular the PC4 image is the noisiest of the full collection, with both random and material structure 
components. Furthermore, the noise is not constant along the line #59, showing a substantial gradient for the PC4 
image. The edge sharpness is comparable to the one of the TSR images. 

 
5.1.3. PPT images 
 

The PPT images result from a Fast Fourier Transform (FFT) of the time-evolution of the temperature increase of 
every pixel. They are characterized by a very good CNR and a very low noise, but suffer from a low sensitivity for deep 
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defects. It should be noted that the three selected PPT images were the best ones, as far as defect detection is 
concerned. Other frequencies were explored but did not enable a better detection of the deepest defects. 

 
5.1.4. HOS images 

 
The three HOS images are very similar. Such similarities can be noticed in other publications using the HOS 

method [20], although this has never been highlighted. They have a fine sensitivity to the shallowest defects, but a poor 
one for medium and deep defect depths. The noise is comparable to the one of TSR, but more influenced by the material 
structure and not so uniform across the sample. The similarity between HOS images and the PC2 image can be noticed too. 
 

 
 
Figure 7. Analysis and comparison of four profiles of the images obtained by the four techniques: TSR, PCT, PPT and HOS.  
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Figure 8. Assessment and comparison of TSR, PCT, PPT and HOS image properties: defect CNR, edge sharpness and 
accuracy on the identified defect lateral dimension. They are given following decreasing defect aspect ratios. 
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5.2. Quantitative analysis of the quality of the TSR coefficient images and comparison with PCT, PPT and HOS images 

 
5.2.1. Compared assessment of the TSR images 
 

The procedure proposed in the previous section has first been applied to compare the three TSR coefficient 
images. The results are represented in Figure 8 (top row): for each parameter - CNR, SM, and log10(|Dd /ΔDd|FWHM) - the 
values resulting from the analysis of the three profiles crossing defects are given, following a clockwise distribution for 
decreasing aspect ratios (which are given in brackets right next to the defect identification numbers). The envelope of 
these distributions is also given, representing the best value of the parameter for the trio of images. Radar-type graphs 
have been chosen to provide the most synthetic presentation and to facilitate the comparisons. 

The CNR of the three TSR images is of the same order of magnitude: between 15 and 30 dB up to aspect ratios 
from 7 to 8. Among the three defects #1-3, 2-2 and 3-1, which have almost the same aspect ratio, only the first two are 
detected with a CNR of about 20 dB contrarily to the last one detected with a CNR of 10 dB. This demonstrates that the 
aspect ratio is not the only governing parameter of defect detection by thermal NDE. For even lower aspect ratios (2.3 
and 1.2 dB), the defects cannot be detected. 

The analysis of the sharpness metrics confirms the semi-quantitative analysis given in Section 5.1: the 
sharpness of the even image is almost lower than the one of the odd images. The influence of the aspect ratio is 
manifest: when it gets lower, sharpness decreases as well. 

The accuracy on the estimation of the defect lateral dimension follows the same trend as the sharpness: odd 
images lead to better results. The effect of the decrease of the aspect ratio is even more critical, so that it was impossible 
to properly evaluate the dimensions of defects #3-1 and 2-3. 

 
5.2.2. Compared assessment of the four methods. 
 

Similar results are presented in Figure 8 for the three concurrent methods (rows 2, 3 and 4). In the second row, 
the PCT results correspond to the second, third and fourth principal component images. The CNRs of the PCT images 
are slightly higher than the TSR ones for defect aspect ratios larger than 7 but decrease for lower ones (the contrast is 
drowned in the noise). The sharpness has the same magnitude as the TSR one, but decreases rapidly with the aspect 
ratio (the contrast plateau no more exists for defects #3-1, 1-4, 2-3). The accuracy on the defect dimension is very similar 
to the TSR one, except for defect #1/2-2* for which a very high accuracy is found, without any simple explanation since 
the defect signature may be disturbed by the partial overlap of defects existing in this zone. 

The PPT results are presented in the third row. The sharpness and accuracy values found for defect 
dimensions are comparable to the ones of the previous two methods. On the contrary, the CNR reaches values generally 
higher than those of the other methods, except for the shallowest defects #1-1 and 2-1. The method appears to be the 
most efficient one when considering the sole CNR, but presents weaknesses regarding edge sharpness and defect 
dimension accuracy comparing to the TSR approach. 

Finally, the bottom row presents the results of the HOS method. They are generally not so good than those of 
the other three methods, in particular for deep defects (AR ≤ 10), making this method the less performing one. 

To get a more synthetic comparison, the same type of representation has been applied to the sole envelopes in 
Figure 9, allowing a rapid overview of the compared performances of the four methods. The TSR method appears to be not the 
best one considering the CNR, but obtains the best results for edge sharpness and defect dimension accuracy. This limited 
performance in CNR is counterbalanced by the fact that, like PPT, it enables to detect deep defects, down to a 4 mm depth.  

 
 

 
Figure 9. Comparison of TSR, PCT, PPT and HOS image properties: envelopes of the CNR, edge sharpness and accuracy on 
the identified defect lateral dimension given following decreasing defect aspect ratios. 
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6. Conclusion 

A quantitative assessment of the quality of the defect images produced by the TSR coefficient method and 
concurrent methods (PCT, PPT and HOS) has been achieved. This assessment is based on the calculation of metrics 
characterising the defect contrast-to-noise radio and edge sharpness and the accuracy on the defect dimensions when 
assimilating them to the full-width at half-maximum of the contrast. These metrics have been estimated for a pulse 
thermography experiment, carried out on a laminate carbon/epoxy coupon containing artificial delamination-like defects, 
already studied in a previous article aiming at a qualitative assessment of the TSR method [5]. 

Those three metrics have been assessed from the analysis of row-profiles in the images generated by the four 
considered methods. These profiles cross both sound and defective regions. The determination of the three metrics has been 
possible only when the contrast shape presented a plateau pattern. In the other cases only the contrast-to-noise ratio has been 
evaluated. The resulting graphs illustrate the strong influence of the defect aspect ratio on the method performances and show 
that other parameters, such as defect depth and material structural noise, have an influence on the defect detection as well. 

Regarding the sole contrast-to-noise ratio, the TSR method appears to be less satisfactory than the PPT method, but 
when it comes to the other two criteria (sharpness and defect dimension characterisation) it turns out to be an efficient tool, even 
for deep defects, at least as accurate as any other method. This confirms the conclusions drawn from the qualitative study [5]. 
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