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Abstract (Arial, 9pt, bold) 

The paper introduces the automated segmentation of hepatic tumor from abdominal Computed Tomography  
images and diagnose it using IR spectroscopy. In this context, a segmentation algorithm for liver tumor is developed, 
which helps to diagnose the tumor by segmenting the affected tumor area. A hybrid diagnosis method, Adaptive EM is 
proposed to detect the hepatic lesions automatically by utilizing sequential images of abdominal CT. An area function 
adaptation scheme that uses EM model grows the clusters without the need for initial selection of clusters. Infrared (IR) 
spectroscopic imaging of human liver tissue slices has been used to identify and characterize liver tumors, by giving a 
discriminative model of nucleus and cytoplast of tumor, incorporating texture, layout, and context information efficiently.  
Both training and testing dataset are preprocessed to produce texton map. The feature responses of each image in the 
training data set is calculated and are trained efficiently in AdaBoost classifier using Conditional Random Field and 
Piecewise Training methods. The proposed method provides high classification and segmentation accuracy for nucleus 
of tumor that are exceedingly textured in IR spectroscopic image. This work also suggests utility for these methods 
beyond the identification of liver tumors. 

Keywords: Adaptive EM, Hepatic lesion, liver tumors, Computed Tomography, AdaBoost, optimized imaging systems, CRF, 
Piecewise Training method 

1. Introduction  

The paper investigates the problem of achieving automatic detection, recognition, and segmentation of nucleus 
of tumor in IR spectroscopic images. Specifically, given an image, the system should automatically partition it into 
semantically meaningful regions each labeled with a specific object class colors as illustrated in Figure 1. 

 

 
 

Fig. 1 Example results of new simultaneous Tumor nucleus recognition and segmentation algorithm 
 
The liver is the biggest organ in the human body and today, liver cancer has turned into an exceptionally normal 

form of cancer with  the number of liver malignancy patients growing exponentially. On the off chance that treated in the 
early stage, liver tumor can be effectively cured. Liver tumor is of two types in particular the primary liver cancer where it 
begins from the liver and secondary (metastatic) liver cancer  which began in an alternate part of the body, for example, 
pancreas, bowel, stomach, lung or breast and has spread to the liver. Latterly, radiologists physically segment the tumors  
from computed tomography (CT) scans, and then ascertain the volumes of every slice. Liver tissue, containing a liver 
metastasis of breast origin (mucinous carcinoma) was surgically removed from a consenting patient and frozen without 
formalin fixation or dehydration procedures, so that lipids and water remain in the tissues.  However, this manual 
segmentation is a tiresome and prolonged task. Generally, automated segmentation techniques have become popular 
because of less  consumption of time, availability and lack of human data. The tumors, which cause in liver, can result in 
major health issue. Such tumors can be of benign or malignant type. Noncancerous tumor masses which develop inside 
liver region are called benign or non-malignant tumors which are generally not life threatening. Where-as cancerous 
tumor masses, which develop inside liver region are known to be life-threatening. Diagnosis and treatment needs to 
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detect these malignant or cancerous tumors precisely. If diagnosed in the early stage of disease, it serves to treat and 
spare patient from deadly outcomes. The proposed technique automatically segments the liver tumors and its infrared 
(IR) spectroscopic imaging of human liver tissue slices has been used to identify and characterize liver tumors. 

A hybrid diagnosis method, Adaptive EM is proposed to detect the hepatic lesions automatically by utilizing 
sequential images of abdominal CT. An area function adaptation scheme that uses EM model grows the clusters without 
the need for initial selection of clusters. As such, the technique can identify K clusters in an input data set by merging the 
existing clusters and by the creating new ones while keeping the number of clusters constant. Hepatic lesions are then 
segmented automatically with necessary morphological operations. 

Expectation Maximization (EM) algorithm [9] can be an iterative way for finding maximum likelihood or maximum a 
posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. 
The first step of EM method is performing an expectation (E) step, which creates a function for the expectation of the log-
likelihood evaluated using the current estimate for the parameters. The second step is the maximization (M) step, which 
computes parameters maximizing the expected log-likelihood found on the E step. As these two steps have to be 
performed alternatively, within one iteration of EM algorithm, first, the probability that a data point comes from a cluster is 
computed for each data point and each cluster; then its parameters are updated based on the probabilities from the 
previous step for the distribution of each cluster. 

However, with existing imaging modalities such as x-rays (plain film, fluoroscopy, and computed tomography 
[CT]), magnetic resonance imaging (MRI), ultrasound (US), single-photon emission computed tomography (SPECT) and 
positron emission tomography (PET), the unmet clinical need in surgery stems from the fact that visible light cannot 
penetrate into blood and tissue more than a few hundred microns, due to high photon attenuation from absorbance and 
scatter. Thus, when a surgeon looks at the surgical field, he/she only sees surface features. For example, with modern 
surgical techniques, 20 to 25% of breast cancers are still resected incompletely[2,3] and local recurrence remains 
unacceptably high at 12-28%. Being able to see structures that need to be resected, such as malignant cells, and 
structures that need to be avoided, such as blood vessels and nerves, is a profound unmet clinical need. 

Near-infrared optical imaging has long been suggested to be a potentially desirable tool for cell and tissue 
imaging due to the ability to obtain images in which every pixel has a wealth of biochemical information and hence used 
to detect fluorescently labelled structures during surgery. This type of imaging has the potential to modernize human 
surgery by providing real-time image guidance to surgeons for tissue that needs to be resected, such as tumors, and 
tissue that needs to be avoided, such as blood vessels and nerves. Thus it is able to reduce the frequency of positive 
margins and therefore, the number of second surgeries, by marking or highlighting cancerous tissue for the surgeon. 
Nevertheless, optimized imaging systems are required for clinical reality. 

The characterization of differentially expressed genes between cancerous and normal tissues is an important 
step in the understanding of tumor genesis. The heterogeneity and instability of human tumors hamper 
straightforward identification of cancer-causing mutations. Infrared (IR) spectroscopic imaging of human liver tissue 
slices can be used to identify and characterize liver tumors. Liver tissue is frozen without formalin fixation or dehydration 
procedures, so that lipids and water remain in the tissues. A set of IR metrics(ratios of various IR peaks) was determined 
for tumors in fixation-free liver tissues. K-means cluster analysis was used to tell tumor from non-tumor. The aim of the 
current work is to identify the most important and characteristic IR spectral features associated with tumor-bearing 
tissues within the liver, with the ultimate goal to develop a method for real-time differentiation of specific cell types 
associated with diseased liver tissue and normal liver tissue that can be used to assist in the surgical resection of liver 
tumors. 

The challenge is to model the visual variability of a large number of unstructured Tumor nucleus, to be invariant 
to viewpoint and illumination, and to be robust to occlusion. The focus here is, not only improving the accuracy of 
segmentation and recognition, but also the efficiency of analyses of the performance of AdaBoost algorithm. The main 
contributions in this paper are threefold. The texture-layout filter feature is the most significant one. These features 
record patterns of textons, and exploit the textural appearance of nucleus, its layout, and its textural context. Next a 
discriminative model is obtained that combines texture-layout filters with lower-level image features, in order to provide a 
near pixel perfect segmentation of the image. Finally, we demonstrate how to train this model efficiently by exploiting 
both boosting and piecewise training methods. 

The paper is organized as follows. Immediately below, we discuss related work. In Section 2, we describe the 
image databases used in our experiments. Section 3 introduces the high-level discriminative model, a conditional 
random field (CRF). Section 4 discusses about  system design which consists of texture-layout filters and their 
combination in a boosted classifier. Finally evaluate and compare with related work and performance of AdaBoost 
algorithm is discussed in Section 5. Section 6 suggests some novel applications of semantic segmentation and 
conclusion and future works are provided in Section 7. 

2.  Literature Survey 

2.1. Recording IR spectroscopic imaging data 

The process of recording IR spectroscopic imaging data was stated in [4]. The liver tissue was pretreated by 
snap freezing in liquid nitrogen, which allowed rapid lowering of the sample to a temperature below −70 °C. Snap 
freezing of the liver tissue provided specimen integrity for further analysis. Cryostat sections of ~2-3 µm thickness were 
obtained at -20 °C. They notably still contain lipi d and water and therefore have less perturbed biomolecules than with 
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fixation. IR spectra were recorded with an imaging FTIR microscope (Perkin Elmer Spotlight 300) with a computer-
controlled microscope stage and a liquid-nitrogen-cooled linear array of 16 mercury cadmium telluride (MCT) detectors. 
Each IR window region was 2,200.0 µm vertically by 300.0 µm horizontally (352 pixels by 48 pixels). The instrument 
obtained a full IR spectrum at each image pixel (6.25 µm by 6.25 µm area) in each window (4 cm−1 resolution, 2 cm−1 
steps in the range of 750–4000 cm−1, and 16 scans per pixel). A MATLAB function from Perkin Elmer called 
“fsm_load.m” by Ben Peterson was used to download the spectral data for each of the seven windows and to 
concatenate them into one large three dimensional matrix of spectra transmittances. The resulting imaging area has 352 
rows of pixels and 336 columns of pixels yielding 118,272 pixels in the image. Each image pixel is associated with a 
distinct IR spectrum.  

Considering that there are 1626 wavenumber steps in the spectrum at each of 118,272 pixels, there are more 
than 192 million measured transmittances to evaluate. IR metrics are devised to reduce the information to a more 
manageable and meaningful set. We have started with the IR metrics of [4] (for prostate cancer on fixed tissues) and 
considered a set that might be more useful without fixation in the specific case. Matlab routines facilitate the calculation 
of a value of each metric at each pixel in the image. The result is a three dimensional matrix of IR metrics, b(i,j,m), where 
i,j are indices over the rows and columns respectively of the image, and m is an index over the metrics. The metrics 
reduce the original data, a spectrum of 1626 points at each image pixel, to 64 values at each pixel. 

The IR metrics are mostly ratios of absorbance at one band ratio to absorbance at another with corrections for 
baseline effects. Metric values were calculated at each pixel and scaled into a 0 to 255 range for presentation as a black-
and-white bitmap image. Images for metrics L1 and L2 are can be considered separately to highlight different regions of 
tissue. A composite image can also be created. It is compared to an H&E stain of a subsequent slice. The transition 
region between tumor and non-tumor exhibits more contrast in the IR composite image than in the H&E stain. The IR 
spectrum is detecting protein changes in the critical region of transition between tumor and non-tumor ones that are not 
as readily evident in the H&E stain. The IR work (which is unstained) is clearly capable of distinguishing a tumor and 
appears useful in characterizing bulk molecular changes in the transition from non-tumor to tumor. 

K-means cluster analysis can also be employed to distinguish 5 groups based on the six IR metrics of the 1626 
IR spectral points at each image pixel have been reduced to six metric values. K-means cluster analysis uses metric 
scores at each image pixel to calculate a similarity (or a “distance”) between a particular image pixel and the average 
metric scores of the group, i.e. a group centroid. The routine changes membership of image pixels in groups to minimize 
the sum of “distances” for each group. The output is an assignment of each image pixel to a group with similar metrics. 
After the K-means analysis is finished, groups can be organized by “distances” between group centroids. 

As illustrated in [1], K-means clustering is a non-hierarchical clustering method. A "hard" class membership for 
each spectrum is obtained, in which class membership of an individual spectrum can be taken only the values of zero or 
one. Randomly selected initial cluster centers are iteratively updated, and thus obtain the class membership for each 
spectrum, assuming well-defined boundaries between the clusters.  Let Spectra are illustrated as points in p-dimensional 
space.  
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Fig. 2. K-means cluster analysis with 5 groups using the unscaled, top-six metrics(top). The tumor is 
represented in red groups. 

Step 1. Initially choose the number of k points, where each point represents a cluster to be made. 
Step 2. Calculate the distance between the points and all objects (spectra). 
Step 3. Attribute the closest cluster to each point. 
Step 4. Calculate the centroids of the clusters and distance between centroids and each of the objects are 

recalculated  
Step 5. For each object  
 if the closest centroid is associated with the cluster to which the object currently belongs, then 
  No change 
 otherwise 
  object will switch its cluster membership to the cluster with the closest centroid 
 end if 
            End For 
Step 6. Repeat the steps 2 to 5 until none of the objects are reassigned 

Table 1. IR  metric values for 5 groups from K-means Analysis 

IR Metric Non-Tumor Tumor 
L1(1744/1548) 2.06 0.882 
L2(1744/1244) 1.68 0.483 
L3(1742/1256) 1.34 0.312 
L4(1080/1548) 1.38 0.17 
L5(1080/1244) 1.21 0.344 
L6(1012/1256) 1.42 0.198 

 

2.2  Various Approaches of Segmentation 

The regions found by bottom-up segmentation were labelled with textual class labels of images, trained in a classifier 
[6]. Yet, semantic objects are not correlated with such segmentations and hence in proposed method, segmentation and 
recognition are performed in the same unified framework rather than in two separate steps. At a high computational cost, 
such a unified approach was presented in [7].  However, using a unary classifier Konishi and Yuille [8] labeled images, 
spatially coherent segmentations are not achieved. 

 

3. Image Database 

This implementation should have the ability of obtaining fluorescence images from consent patients. We have 
obtained 4 normal, 5 hepetocellular carcinoma images, 4 dysplasia images and 4 adenomacarcinoma images from 
Global Hospital, Chennai. Dr.Mukul, histopathologist and Dr. Balaji of Global Hospital have helped us a lot in getting 
insight assessment of the extent and number of colorectal liver metastases in fluorescent images. 

4. A Conditional Random Field Model of Classes 

Conditional random field (CRF) model [9]  is used to learn the conditional distribution over the class labeling, 
given an image. To incorporate texture layout, color, location, and edge cues in a single unified model, conditional 
random field is used. Conditional probability of the class labels c given an image x is defined as 

 
 

 
 

log ���|�, 
� = ∑ �� � ��� , ��; 
�� + 	���� , ��; 
�� + λ�c�, i; θ�� +	∑ ϕ�c�, c�, g���x�; θ!� − log	Z�θ, x���,��∈ℰ  (1) 
 

where  is the set of edges in a 4-connected grid structure, Z(θ, x) is the partition function which normalizes the 
distribution, and i and j correspond to sites in the graph.  

Note that this discriminative model is composed of three unary potentials, depend only on one node i in the 
graph, and one pairwise potential depending on pairs of neighbouring nodes in the graph. Therefore the four potential 
functions and their parameters are defined, before detailing inference and learning. 

edge texture 
layout 

location color 
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4.1 Learning the CRF Model 

 Three unary potentials and one pairwise potential comprises the four potential functions in this model. 

4.1.1. Texture-Layout Potentials 

 The unary texture layout potentials are defined as
 

��&

where P� 	&(|), *		� is the normalized distribution given by a boosted classifier. This classifier combines the 
features of texture-layout filters to model the texture layout, and textural context of the object classes. The texture
potentials are proved to be the most powerful term in the CRF, which is shown in the evaluation.

4.1.2. Color Potentials 

Gaussian Mixture Models (GMMs) are used to represent the color models, where the mixture coefficients 
depend on the class label. The unary color potentials exploit the colo
conditional probability of the color x of a pixel is given by

  
���|�� � ∑ ���|+���,

with color clusters (mixture components)
 

���|+� � -��|., , ∑/) 

where µk and ∑/		are the mean and variance respectively of color cluster k.

4.1.3. Location Potentials 

This unary location potential performs like a look
 

where index 0 ̂is the normalised version of pixel index i, where normalisation lets the images of different sizes: a 
canonical square on which the image is mapped and 
dependence of the class labels on the absolute location of the pixel in the image are confined by th
potentials. Fig.4. illustrates some learned location potentials.

4.1.4. Edge Potentials 

The edge potentials in the CRF deals severely with neighbouring nodes in the graph having different class 
labels explicitly, except where there is a corresponding edge in the image. More the darker pixels in image represent 
more the stronger edge responses and therefore it
between the neighboring pixels as 

 

2�3	 � exp	�"6��� " �3

where xi and xj are three-dimensional vectors representing the colors of pixels i and j respectively.
 
 
 
 
 
 
 
 
 
 
 
 
 

ee unary potentials and one pairwise potential comprises the four potential functions in this model. 

The unary texture layout potentials are defined as 
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is the normalized distribution given by a boosted classifier. This classifier combines the 
layout filters to model the texture layout, and textural context of the object classes. The texture

powerful term in the CRF, which is shown in the evaluation.

Gaussian Mixture Models (GMMs) are used to represent the color models, where the mixture coefficients 
depend on the class label. The unary color potentials exploit the color distribution of objects in a particular image. The 
conditional probability of the color x of a pixel is given by 

� �+|��               

with color clusters (mixture components) 

      

are the mean and variance respectively of color cluster k. 

This unary location potential performs like a look-up table with an entry for each class and pixel location:

7(,�&(,*; 87	� � log 	87	� &(,0�̂                                                  

is the normalised version of pixel index i, where normalisation lets the images of different sizes: a 
canonical square on which the image is mapped and 0 ̂points to the pixel position within this square. The relatively weak 
dependence of the class labels on the absolute location of the pixel in the image are confined by th

illustrates some learned location potentials. 

ls in the CRF deals severely with neighbouring nodes in the graph having different class 
labels explicitly, except where there is a corresponding edge in the image. More the darker pixels in image represent 
more the stronger edge responses and therefore it costs lower. The edge feature gij measures the difference in color 
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measures the difference in color 
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dimensional vectors representing the colors of pixels i and j respectively. 
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5. System Design 

The system design describes the models of the proposed system in the following sequence : preprocessing, 
clustering, feature extraction, building classifier model, performance evaluation.

5.1 System Architecture 

The overall system architecture is
 

5.2 Textonization 

In this module, training images are given as the input to the 17 dimensional convolution filter bank. The training 
images are convolved at scale k. The 17D responses for all training pixels are then white
covariance), and an unsupervised clustering is performed. Next, we employ the Euclidean
algorithm. Finally, each pixel in each image is assi

5.2.1 Preprocessing 

In preprocessing technique filters are used to reduce the noise. The choice of filter
as long as it is sufficiently representative. In this project we use 17
to all three color channels, while the other filters are applied only to the luminance. This
have full rank in a singular-value decomposition, and therefore no redundant elements. The filter bank consists of three 
Gaussian filter, four Laplacian of Gaussian fi

5.2.1.1 Gaussian Filter 

In case of Gaussian filter shown in Fig. 7 (a), 
applied to Hue, Saturation and Value Channel. As 
Gaussian Filter. 

 
 
 

Fig. 3. Example location potentials. 

The system design describes the models of the proposed system in the following sequence : preprocessing, 
clustering, feature extraction, building classifier model, performance evaluation. 

cture is shown below. 

Fig. 5. Training Phase 

In this module, training images are given as the input to the 17 dimensional convolution filter bank. The training 
The 17D responses for all training pixels are then whitened (to give zero mean and unit 

covariance), and an unsupervised clustering is performed. Next, we employ the Euclidean-distance K
algorithm. Finally, each pixel in each image is assigned to the nearest cluster center, producing the texton map.

technique filters are used to reduce the noise. The choice of filter-bank is somewhat arbitrary, 
as long as it is sufficiently representative. In this project we use 17-D Convolution filter bank.The Gaussians are applied 

the other filters are applied only to the luminance. This filter
value decomposition, and therefore no redundant elements. The filter bank consists of three 

Gaussian filter, four Laplacian of Gaussian filter (LoG) and four first order derivatives of Gaussians.

shown in Fig. 7 (a), three filters take a sigma value of 1,2,4. All the three Gaussian filter all 
applied to Hue, Saturation and Value Channel. As a result of this filter we obtain nine filter responses three from each 

The system design describes the models of the proposed system in the following sequence : preprocessing, 

 

In this module, training images are given as the input to the 17 dimensional convolution filter bank. The training 
ned (to give zero mean and unit 

distance K-means clustering 
gned to the nearest cluster center, producing the texton map. 

bank is somewhat arbitrary, 
D Convolution filter bank.The Gaussians are applied 

filter-bank was determined to 
value decomposition, and therefore no redundant elements. The filter bank consists of three 

lter (LoG) and four first order derivatives of Gaussians. 

three filters take a sigma value of 1,2,4. All the three Gaussian filter all 
a result of this filter we obtain nine filter responses three from each 
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5.2.1.2 Log Filter 

Four LoG filter with the filter value of 1,2,4,8 correspondingly is used. All the LoG
As a result of this filter we get 4 filter response, one response from each LoG filter

5.2.1.3 First Order Derivative Gaussian Filter

Four filters of first order derivative Gaussian is used ( two
dimension first order Gaussian derivation) each with two different values of kernels ( sigma = 2,4)
the filters are applied to only V Channel. As result it produces fou

 

5.3 Clustering 

K-means clustering aims to partition n observations into k clusters in which each observation belongs to the 
cluster with the nearest mean, serving as a prototype of the cluster. Given a set of observations (x1, x2, , xn
each observation is a d-dimensional real vector, k
= S1, S2,... , Sk so as to minimize the within

5.4 Texton Map 

The texton map can be denoted as T where pixel i 
textons, is split into K channels. An integral image is built for each channel and used to compute texture
responses in constant time. After running K
assigned to the nearest cluster center, thus providing the texton map

5.5 Feature Extraction 

In this process, the images in the t
those objects which is in database are considered to be features and stored in features model file. Those obj
are not present in object database are considered to be non

 

Fig. 6. Testing Phase 

Four LoG filter with the filter value of 1,2,4,8 correspondingly is used. All the LoG filters are applied to only V Channel. 
As a result of this filter we get 4 filter response, one response from each LoG filter shown in Fig. 7 (b)

.2.1.3 First Order Derivative Gaussian Filter 

Four filters of first order derivative Gaussian is used ( two x-dimension first order derivative Gaussian filter and two y
dimension first order Gaussian derivation) each with two different values of kernels ( sigma = 2,4)

to only V Channel. As result it produces four filter responses. 

means clustering aims to partition n observations into k clusters in which each observation belongs to the 
cluster with the nearest mean, serving as a prototype of the cluster. Given a set of observations (x1, x2, , xn

dimensional real vector, k-means clustering aims to partition the n observations into k ( n) sets S 
, Sk so as to minimize the within-cluster sum of squares (WCSS).  

map can be denoted as T where pixel i has value Ti 1,2, . . . ,K. The texton map of an image, containing K 
textons, is split into K channels. An integral image is built for each channel and used to compute texture

After running K-means clustering on the filter responses, each
assigned to the nearest cluster center, thus providing the texton map which is shown in system design Fig. 5

ges in the training dataset are trained and features and nonfeatures are extracted. All 
database are considered to be features and stored in features model file. Those obj

object database are considered to be non-features and stored in non-features model file.

 

filters are applied to only V Channel. 
Fig. 7 (b). 

dimension first order derivative Gaussian filter and two y-
dimension first order Gaussian derivation) each with two different values of kernels ( sigma = 2,4), shown in Fig. 7 (c). All 

means clustering aims to partition n observations into k clusters in which each observation belongs to the 
cluster with the nearest mean, serving as a prototype of the cluster. Given a set of observations (x1, x2, , xn), where 

means clustering aims to partition the n observations into k ( n) sets S 

texton map of an image, containing K 
textons, is split into K channels. An integral image is built for each channel and used to compute texture-layout filter 

means clustering on the filter responses, each pixel in each image is 
which is shown in system design Fig. 5. 

trained and features and nonfeatures are extracted. All 
database are considered to be features and stored in features model file. Those objects which 

features model file.  
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Fig. 7 (a). Gaussian Filter  

5.6 Subsampling 

The considerable memory and processing requirements make training on
Computational expense is reduced by calculating filter responses on a grid (either 3x3 for the smaller database or 5x5 for 
the larger database). The shape filter responses themselves are still calculated at full resolution to enable per
accurate classification at test time. One consequence of this sub
learned. On its own, this would lead to inaccurate segmentation at object boundaries. However, when applied in the 
context of the CRF, the edge and color potentials come into effect to locate the object boundary accurately. As a result of 
subsampling an image with a source resolution 
320X240X3. 

 

5.7 AdaBoost Classifier Algorithm 

The boosting process is used for automatic feature selection and learning the texture
classification and feature selection is achieved using shared boosting to give an efficient classifier which can be applied 
to a large number of classes. A multi-class classifier is learned using an adapted version of the Joint Boosting
The algorithm iteratively builds a strong classifier as a sum of ‘weak classifiers’. Each weak classifier is a decision stump
based on a thresholded feature response, and is shared between a set of classes, allowing a single feature to help 
classify several classes at once. The sharing of features bet
the number of classes, and also leads to improve
summing the classification confidence of M weak classifiers.

The basic boosting algorithm uses +1 and 
algorithm is to reduce the problem of 
problems. These subproblems are called alpha
c and a fixed label 1,2, . . . ,C, where C is the number of classes. In the alpha
binary decision: it can either keep its old label or switch to label . Therefore, we introduce a 
1. Each weak learner is a decision stump bas
nonfeature index belongs to C, Q,C,r,t). The region r and texton index t together specify the texture
and v[r,t](i) denotes the corresponding feature resp

For those classes that share this feature (c belongs to C), the weak learner gives h
depending on the comparison of feature (c belongs to C). Round m chooses a new weak learner by minimizing an error 
function Jwse incorporating the weights: 

 

: �
∑ ∑ ;<

=><
=?@��,A,B�CD<=∈E

∑ ∑ ;<
=?@��,A,B�CDF<=∈E

 

   G � : � 	
∑ ∑ ;<

=><
=?@��,A,B�HDF< 	=∈E

∑ ∑ ;<
=><

=?@��,A,B�HDF< 	=∈E
  

5.8 Testing image 

Here, we input the test image to be processed. If the automatic recognition correctly classifies all the object 
classes in the image, then we achieve the final output. First the image is textonized to obtain the texton map of the 
image. From the textonized image we extract the features and non

Fig. 7 (b). LOG Filter   Fig. 7 (c). 

The considerable memory and processing requirements make training on a per
Computational expense is reduced by calculating filter responses on a grid (either 3x3 for the smaller database or 5x5 for 
the larger database). The shape filter responses themselves are still calculated at full resolution to enable per

at test time. One consequence of this sub-sampling is that a small degree of shift
learned. On its own, this would lead to inaccurate segmentation at object boundaries. However, when applied in the 

color potentials come into effect to locate the object boundary accurately. As a result of 
subsampling an image with a source resolution 1600X1200X3 is been subsampled and reduced to a target resolution of 

boosting process is used for automatic feature selection and learning the texture
classification and feature selection is achieved using shared boosting to give an efficient classifier which can be applied 

class classifier is learned using an adapted version of the Joint Boosting
The algorithm iteratively builds a strong classifier as a sum of ‘weak classifiers’. Each weak classifier is a decision stump

response, and is shared between a set of classes, allowing a single feature to help 
classify several classes at once. The sharing of features between classes allows for classification with cost sub
the number of classes, and also leads to improved generalization. The learned ‘strong’ classifier is an additive model 
summing the classification confidence of M weak classifiers.  

The basic boosting algorithm uses +1 and -1 as output of weak classifiers. The idea of the expansion move 
 maximizing function with multiple labels to a sequence of binary maximization 

problems. These subproblems are called alpha-expansions. Suppose that we have a current configuration (set 
e C is the number of classes. In the alpha-expansion operation, each pixel i makes a 

binary decision: it can either keep its old label or switch to label . Therefore, we introduce a binary vector s belongs to 0, 
Each weak learner is a decision stump based on feature response v[r,t](i) of the form with parameters (a,

belongs to C, Q,C,r,t). The region r and texton index t together specify the texture
and v[r,t](i) denotes the corresponding feature response at position i. 

For those classes that share this feature (c belongs to C), the weak learner gives hi(c) belongs to
depending on the comparison of feature (c belongs to C). Round m chooses a new weak learner by minimizing an error 
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Here, we input the test image to be processed. If the automatic recognition correctly classifies all the object 
classes in the image, then we achieve the final output. First the image is textonized to obtain the texton map of the 

image we extract the features and non-features in the model file. The features extracted from 

 

Fig. 7 (c). DOG Filter 

a per-pixel basis impractical. 
Computational expense is reduced by calculating filter responses on a grid (either 3x3 for the smaller database or 5x5 for 
the larger database). The shape filter responses themselves are still calculated at full resolution to enable per-pixel 

sampling is that a small degree of shift-invariance is 
learned. On its own, this would lead to inaccurate segmentation at object boundaries. However, when applied in the 

color potentials come into effect to locate the object boundary accurately. As a result of 
0X3 is been subsampled and reduced to a target resolution of 

boosting process is used for automatic feature selection and learning the texture-layout potentials. Unary 
classification and feature selection is achieved using shared boosting to give an efficient classifier which can be applied 

class classifier is learned using an adapted version of the Joint Boosting algorithm. 
The algorithm iteratively builds a strong classifier as a sum of ‘weak classifiers’. Each weak classifier is a decision stump 

response, and is shared between a set of classes, allowing a single feature to help 
ication with cost sub-linear in 

d generalization. The learned ‘strong’ classifier is an additive model 

1 as output of weak classifiers. The idea of the expansion move 
maximizing function with multiple labels to a sequence of binary maximization 

expansions. Suppose that we have a current configuration (set of labels) 
operation, each pixel i makes a 

binary vector s belongs to 0, 
ed on feature response v[r,t](i) of the form with parameters (a, b, threshold, 

belongs to C, Q,C,r,t). The region r and texton index t together specify the texture-layout filter feature, 

(c) belongs to a + b,  b 
depending on the comparison of feature (c belongs to C). Round m chooses a new weak learner by minimizing an error 

  (7) 
  (8) 

Here, we input the test image to be processed. If the automatic recognition correctly classifies all the object 
classes in the image, then we achieve the final output. First the image is textonized to obtain the texton map of the 

features in the model file. The features extracted from 
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the test set is given as a input to the classifier model which have been generated using AdaBoost algorithm as a result of 
which we get the semantically segmented image with each object in a image assigned to corresponding color given in 
the object database. 

 

6. RESULTS AND COMPARISONS 

In this section we investigate the performance of our system on several challenging datasets, and compare our 
results with existing work. We first investigate the effect of different aspects of the model, and then give the full 
quantitative and qualitative results.  

6.1 Boosting Accuracy 

Boosting classifier gradually selects new texture-layout filters to improve classification accuracy. Initially, after 
30 rounds of boosting (i.e. 30 texture-layout filters), a very poor classification is given, with low confidence. As more 
texture layout filters are added, the classification accuracy improves greatly, and after 100 rounds a very accurate 
classification is given. Note that this illustrates only the texture-layout potentials, and not the full CRF model. As 
expected, the training error Jwse (10) decreases non-linearly as the number of weak learners increases. Furthermore, 
Table 2. shows the accuracy of classification with respect to the validation set, which after about 100 rounds flattens out 
to a value of approximately 48.5% for tumor nucleus. The accuracy against the validation set is measured as the 
pixelwise segmentation accuracy, in other words the percentage of pixels that are assigned the correct class label. 

Table 2. Performance Analysis of Adaboost classifer in HCC 

Classes Structure/Tissue Percentage 
Red HCC 48.615 
Black Not identified 51.385 

Table 3. Performance Analysis of Adaboost classifer in Dysplasia 

Classes Structure/Tissue Percentage 
Red Dysplasia 53.5 
Black Not identified 46.5 

Table 3. Performance Analysis of Adaboost classifer in AdenomaCarcinoma 

Classes Structure/Tissue Percentage 
Red AdenomaCarcinoma 54.85 
Black Not identified 45.15 
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