
Application of Sparse Non-Negative Matrix Factorization in infrared non-
destructive testing  

 
by Bardia Yousefi, Clemente Ibarra Castanedo, Xavier P.V. Maldague 

Computer vision and systems laboratory (CVSL), Department of Electrical and Computer Engineering, Laval University, 
Quebec City (Quebec) G1V 0A6, Canada 
Email: Bardia.Yousefi.1@ulaval.ca , {IbarraC, Xavier.Maldague}@gel.ulaval.ca  

Abstract  

Non-negative matrix factorization (NMF) solves the problem of negative basis in principal component analysis 
(PCA) and widely used in diverse applications in different fields. Here, we show an application of sparse-NMF in infrared 
non-destructive testing (IR-NDT) imaging. We applied Sparse-NMF to determine the subsurface defects of an Aluminium 
plate specimen applying active thermographic method. To obtain results we compared the ability of Sparse-NMF to detect 
subsurface defects and its computational load in compared to state-of-the-art thermographic approaches such as:  principal 
component analysis/thermography (PCT), Candid Covariance-Free Incremental Principal Component Thermography 
(CCIPCT), Sparse PCT, non-negative matrix factorization (NMF), and standard NMF with gradient descend (GD) and non-
negative least square (NNLS). The results show considerable performance (93%- 39.52s) for Sparse-NMF, which 
conclusively indicate the promising performance as a confirmation for the outlined properties. 
Keywords: Subsurface defect detection, Sparse Non-negative matrix factorization (Sparse-NMF), infrared non-destructive 

testing (IR-NDT). 

SUMMARY 
 
Non-negative matrix factorization (NMF) is a matrix decomposition approach similar to PCA with a difference in 

basis matrix which decomposes an input matrix into two low-rank non-negative matrices [1]. Nonnegative property of NMF 
is not followed by PCA (basis matrix produced by PCA can have negative parameters). NMF’s origin is traced back  to 
1970s ([2-4]) which has been studied extensively. In 2001, Lee and Seung [1,2] presented NMF applying for clustering and 
afterward NMF became more known for data-mining and machine learning uses and showed its ability for solving 
challenging pattern recognition problems. Matrix factorization has been employed for infrared non-destructive testing (IR-
NDT) where showed the application of three methods: principal component analysis (PCA), non-negative matrix 
factorization (NMF), and archetypal analysis (AA) and showed its advantages and pitfalls [5]. Moreover, the application of 
NMF for two ways of its computations using gradient descend (GD) and non-negative least square (NNLS) for evaluating 
of cultural heritage objects and buildings illustrated considerable performance of such algorithm for detecting subsurface 
defects [6].  

Here, we show the application of sparse non-negative matric factorization (Sparse-NMF) in detecting subsurface 
defects. Aluminium (AL) plate has been previously utilized for the evaluation of thermography techniques and represented 
a substantial tool of benchmarking thermographic methods. The data-set was compiled using following experimental 
scenario regarding acquisition parameters. The inspection was conducted from the front side of the specimen (having the 
depths range from 0.2 to 1 mm). Two photographic flashes were used: Balcar FX 60, 5ms thermal pulse, 6.4 kJ/flash. 

Infrared camera: Santa Barbara Focal plane (MWIR, nitrogen cooled, InSb, 320 × 256 pixels). The parameters of 

acquisition are tuned as: Sampling rate, 𝒇𝒔 =157 Hz; Duration, 𝒕𝒂𝒄𝒒 = 6.37s; Time step, 𝑫𝒕 = 0.025s; Truncation window, 

𝑤(𝑡)𝑠 = 6.37 s; Total number of frames = 250. Figure 1.h illustrates the scheme of the specimen which has been utilized 
[7]. The presented thermography analysis has been performed in a PC (Intel(R) Core(TM) i5 CPU, 3.20GHz, RAM 
16.00GB, 64 bit Operating System) and using MATLAB computer programming. Figure 1 presents selected results of the 
subsurface defect detection using Sparse-NMF (Figure 1.f) compared with state-of-the-art approaches such as PCT [8] 
(Figure 1.b), Candid Covariance-Free Incremental Principal Component Thermography (CCIPCT) [9] (Figure 1.g), NMF 
(Figure 1.a), NMF-gd (Figure 1.c), NMF-nnls [6] (Figure 1.d), and Sparse-PCT [10] (Figure 1.e). The qualitative results of 
Sparse-NMF indicated considerable accuracy relative to state-of-the-art techniques. To calculate the quantitative accuracy, 
we employed a binary image as ground truth (GT) as a reference for our calculation. A metric called Intersection over 
Union (IoU), also denoted as Jaccard index, is used to quantify the percent overlap between the GT and our prediction 
output and measured by the number of pixels common between the GT and resulting masks divided by the overall number 
of pixels existing across both masks. Figure 1.i presents quantitative assessment of Sparse-NMF in comparison to state-
of-the-art thermographic approaches and showed 93% IoU accuracy with 39.52s computational load. The NMF and PCT 
have a IoU range of 95% (0.25s) and 91% (0.56s), respectively. NMF-gd and NMF-nnls were likewise relatively accurat 
having 87% (14.81s) and 83% (45.18s), respectively. 
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The quantitative results of Sparse-PCT and CCIPCT for detecting defects were not high (unlike their qualitative 
results), probably due to smaller targeted defects area and lower resolution of detected surface. To conclude, Sparse-NMF 
showed significant accuracy for detecting the subsurface defects and can be considered as an extensive technique for 
thermographic analysis. 
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Fig.1 Evaluation of the qualitative accuracy of Sparse-NMF(f.) versus state-of-the-art approaches(a-e,g) in 

thermography. The graph (i.) shows the IoU metric and computational load of each algorithm. 
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